Integrating Occupant Behavior into Window Design: A Dynamic Simulation Study for Enhancing Natural Ventilation in Residential Buildings

Predicted natural ventilation (NV) often diverges from actual performance in dwellings. This discrepancy arises in part because most design tools do not account for how occupants actually operate windows. This study aims to determine how window geometry and orientation should be adjusted when occupa...

Full description

Saved in:
Bibliographic Details
Main Authors: Mojgan Pourtangestani, Nima Izadyar, Elmira Jamei, Zora Vrcelj
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/15/13/2193
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Predicted natural ventilation (NV) often diverges from actual performance in dwellings. This discrepancy arises in part because most design tools do not account for how occupants actually operate windows. This study aims to determine how window geometry and orientation should be adjusted when occupant behavior is considered. Survey data from 150 Melbourne residents were converted into two window-operation schedules: Same Behavior (SB), representing average patterns, and Probable Behavior (PB), capturing stochastic responses to comfort, privacy, and climate. Both schedules were embedded in EnergyPlus and applied to over 200 annual simulations across five window-design stories that varied orientations, placements, and window-to-wall ratios (WWRs). Each story was tested across two living room wall dimensions (7 m and 4.5 m) and evaluated for air-change rate per hour (ACH) and solar gains. PB increased annual ACH by 5–12% over SB, with the greatest uplift in north-facing cross-ventilated layouts on the wider wall. Integrating probabilistic occupant behavior into window design remarkably improves NV effectiveness, with peak summer ACH reaching 4.8, indicating high ventilation rates that support thermal comfort and improved IAQ without mechanical assistance. These results highlight the potential of occupant-responsive window configurations to reduce reliance on mechanical cooling and enhance indoor air quality (IAQ). This study contributes a replicable occupant-centered workflow and ready-to-apply design rules for Australian temperate climates, adapted to different climate zones. Future research will extend the method to different climates, housing types, and user profiles and will integrate smart-sensor feedback, adaptive glazing, and hybrid ventilation strategies through multi-objective optimization.
ISSN:2075-5309