Online Multi-Object Tracking Based on Record Confidence and Hierarchical Association for Cyber-Physical Social Intelligence

As a vital technology in Cyber-Physical Social Intelligence (CPSI), Multi-Object-Tracking (MOT) can support comprehensive perception and analysis of the physical environment and social virtual space, promoting an in-depth understanding of human behavior, object movement, and social interaction. Most...

Full description

Saved in:
Bibliographic Details
Main Authors: Jieming Yang, Dezhen Feng, Yuan Gao, Cong Liu
Format: Article
Language:English
Published: Tsinghua University Press 2025-06-01
Series:Big Data Mining and Analytics
Subjects:
Online Access:https://www.sciopen.com/article/10.26599/BDMA.2025.9020024
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As a vital technology in Cyber-Physical Social Intelligence (CPSI), Multi-Object-Tracking (MOT) can support comprehensive perception and analysis of the physical environment and social virtual space, promoting an in-depth understanding of human behavior, object movement, and social interaction. Most MOT methods often adopt simple interpolation or prediction strategies when dealing with temporarily lost targets, but ignore the comprehensive consideration of the state of the target before its reappearance. This approach may lead to an incomplete understanding of the target’s behavior and dynamics, which affects the accuracy and depth of the comprehensive understanding of social and physical space interactions in the real world. To improve it, we propose an online multi-object tracking method based on Record Confidence and Hierarchical Association (RCHA), which is represented as RCHA-Track. The Kalman filter combined with an Enhanced Correlation Coefficient (ECC) provides more accurate motion prediction under the influence of camera motion. The record confidence is designed to evaluate the loss status of the unseen object and refine the tracking trajectory. The normally tracked targets and the temporarily lost targets are combined to perform a hierarchical association based on the number of lost frames to achieve more accurate data associations. Compared with the latest ByteTrack, RCHA-Track improves MOTA, IDF1, and HOTA by 1.7%, 1.6%, and 1.3% on the benchmark dataset MOT17, and 1.3%, 2.1%, and 2.0% on MOT20, respectively, achieving state-of-the-art performance. Extensive ablation experiments demonstrate the effectiveness of each key module in the proposed RCHA-Track.
ISSN:2096-0654
2097-406X