Reshaping the anomalous Hall response in tilted 3D system with disorder correction

The anomalous Hall conductivity (AHC) in the nodal line semimetals (NLSMs) due to the presence of a symmetry-protected nodal ring adds complexity in the investigation of their transport properties. By employing quantum kinetic theory and considering the weak disorder limit, we analyze the intraband...

Full description

Saved in:
Bibliographic Details
Main Authors: Vivek Pandey, Pankaj Bhalla
Format: Article
Language:English
Published: IOP Publishing 2025-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/ade46a
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The anomalous Hall conductivity (AHC) in the nodal line semimetals (NLSMs) due to the presence of a symmetry-protected nodal ring adds complexity in the investigation of their transport properties. By employing quantum kinetic theory and considering the weak disorder limit, we analyze the intraband and interband parts of AHC in the tilted 3D Dirac NLSMs. Our findings reveal that the net anomalous response is mainly contributed by the interband part. Further, the latter part gives non zero results by breaking inversion symmetry via tilt. We observe that the competition between the tilt and the chemical potential emerges kinks at distinct characteristic frequencies in the intrinsic interband part of the anomalous conductivity. On the other hand, the disorder driven interband component of the conductivity exhibits a prominent peak at low chemical potential, followed by a sign change. Notably, the disorder or extrinsic contribution to the response dominates over the intrinsic interband contribution, making it a crucial factor for the study of the overall response of a three-dimensional system.
ISSN:1367-2630