Calculation of Activity Concentration Index for an Internal Space in a Concrete Structure

The Activity Concentration Index (ACI), defined in Directive 2013/59/Euratom, serves as a criterion for the radiological significance of Naturally Occurring Radioactive Materials (NORMs) concentrated in building materials, considering related exposures due to the external gamma radiation field but n...

Full description

Saved in:
Bibliographic Details
Main Authors: Stamatia Gavela, Georgios Papadakos, Nikolaos Nikoloutsopoulos
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/15/12/2075
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Activity Concentration Index (ACI), defined in Directive 2013/59/Euratom, serves as a criterion for the radiological significance of Naturally Occurring Radioactive Materials (NORMs) concentrated in building materials, considering related exposures due to the external gamma radiation field but not due to radon concentration levels. This study proposes a simple way of applying the ACI to interior spaces when concrete is the dominant construction material. Three calculation methods were examined, using four spaces within existing buildings, namely Method A, using the building elements’ mass proportions as a weighting factor; Method B, using only the geometrical characteristics of the internal space; and Method C, combining the mass proportions and inverse square distances. This methodology proposes a way of calculating the ACI based on data provided by existing studies about NORM concentrations in building materials and, thus, no sampling and subsequent NORM concentration measurements were required. The spatial data could be easily determined using either building plans or in situ measurements, using a handheld laser distance meter. The advantages and disadvantages of all three methods were analyzed, along with a comparison to in situ gamma radiation field measurements, performed with a portable Geiger–Müller detector. All the methods showed proportionality to the measured values. Method C was found to be the most suitable, especially for existing buildings, and Method A is recommended for early-stage design assessments.
ISSN:2075-5309