Intersection Sight Distance in Mixed Automated and Conventional Vehicle Environments with Yield Control on Minor Roads
Intersection sight distance (ISD) requirements, currently designed for driver-operated vehicles (DVs), will be affected once automated vehicles (AVs) enter the driving environment. This paper examines the ISD for intersections with a yield control on a minor road in a mixed DV-AV environment. Five p...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-04-01
|
Series: | Smart Cities |
Subjects: | |
Online Access: | https://www.mdpi.com/2624-6511/8/3/73 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Intersection sight distance (ISD) requirements, currently designed for driver-operated vehicles (DVs), will be affected once automated vehicles (AVs) enter the driving environment. This paper examines the ISD for intersections with a yield control on a minor road in a mixed DV-AV environment. Five potential conflict types with different ISD requirements are modeled as a minor-road vehicle proceeds to cross the intersection, turns right, or turns left. Furthermore, different models are developed for each conflict type depending on the vehicle types on the minor and major roads. These models, along with the intersection geometry, establish the system demand and supply models for ISD reliability analysis. A surrogate safety measure is developed and used to measure ISD non-compliance and is denoted by the probability of unresolved conflicts (PUC). The models are applied to a case study intersection, where PUC values are estimated using Monte Carlo Simulation and compared to an established target value relating to the DV-only traffic of 0.00674. The results show that AV-related traffic has higher overall PUC values than those of DV-only traffic. A corrective measure, reducing the AV speed limit on the minor-road approaches by 3 to 4 km/h, decreases the overall PUC to values below those of the target PUC. |
---|---|
ISSN: | 2624-6511 |