Numerical Investigation, Error Analysis and Application of Joint Quadrature Scheme in Physical Sciences

In this work, a joint quadrature for numerical solution of the double integral is presented. This method is based on combining two rules of the same precision level to form a higher level of precision. Numerical results of the present method with a lower level of precision are presented and compare...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Những tác giả chính: Saumya Ranjan Jena, Damayanti Nayak, Mitali Madhumita Acharya, Satya Kumar Misra
Định dạng: Bài viết
Ngôn ngữ:Tiếng Anh
Được phát hành: University of Baghdad, College of Science for Women 2023-10-01
Loạt:مجلة بغداد للعلوم
Những chủ đề:
Truy cập trực tuyến:https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/7376
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Miêu tả
Tóm tắt:In this work, a joint quadrature for numerical solution of the double integral is presented. This method is based on combining two rules of the same precision level to form a higher level of precision. Numerical results of the present method with a lower level of precision are presented and compared with those performed by the existing high-precision Gauss-Legendre five-point rule in two variables, which has the same functional evaluation. The efficiency of the proposed method is justified with numerical examples. From an application point of view, the determination of the center of gravity is a special consideration for the present scheme. Convergence analysis is demonstrated to validate the current method.
số ISSN:2078-8665
2411-7986