Synergistic Mechanisms Between Elderly Oriented Community Activity Space Morphology and Microclimate Performance: An Integrated Learning and Multi-Objective Optimization Approach

This study collected site and spatial morphological data from 63 typical aging community activity spaces and extracted 12 spatial types through statistical analysis. A parametric modeling tool was used to generate spatial models. Based on clearly defined design variables and constraints, the NSGA-II...

Full description

Saved in:
Bibliographic Details
Main Authors: Fang Wen, Lu Zhang, Ling Jiang, Rui Tang, Bo Zhang
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:ISPRS International Journal of Geo-Information
Subjects:
Online Access:https://www.mdpi.com/2220-9964/14/6/211
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study collected site and spatial morphological data from 63 typical aging community activity spaces and extracted 12 spatial types through statistical analysis. A parametric modeling tool was used to generate spatial models. Based on clearly defined design variables and constraints, the NSGA-II multi-objective optimization algorithm was applied to minimize summer thermal discomfort, maximize winter thermal comfort, and maximize annual average sunlight duration, resulting in 342 Pareto optimal solutions. The study first explored the linear relationships between spatial morphology and environmental performance using the Spearman method. It then integrated ensemble learning and the interpretable machine learning model SHAP to reveal nonlinear relationships and boundary effects. The results of the two methods complemented and reinforced each other. Based on a comparison of these two approaches, morphological indicators showing significant differences were selected for attribution and sensitivity analyses, clarifying the mechanisms by which spatial morphological parameters influence environmental performance and identifying their critical thresholds. Key findings include the following: (1) the UTCI-S exhibits significant negative linear correlations with the open space ratio (OSR) and spatial crowding density (SCD); the UTCI-W shows negative linear correlations with canopy coverage (CVH) and wind speed (WS); and a positive linear correlation exists between the sky view factor (SVF) and AV.SH. (2) Boundary effects and threshold intervals of critical morphological parameters were identified as follows. The open space ratio should be controlled to 10–15%, the shrub–tree layer coverage to 0.013–0.0165%, and the average building height to 3.1–3.8 m. (3) Spatial layout principles demonstrate that placing fully enclosed spaces (E-2) and semi-enclosed spaces (S-1/S-3) on the northern side, as well as semi-enclosed spaces (S-1/S-2) and circulation spaces (C-3) on the southern side, significantly enhance microclimatic performance. These findings provide quantitative guidelines for community space design in cold regions and offer data support for creating outdoor environments that meet the comfort needs of the elderly.
ISSN:2220-9964