Public Sentiment Analysis on the Boycott Israel Movement on Platform X Using Random Forest and Logistic Regression Algorithms

This research aims to analyze public sentiment toward the boycott movement against Israel on the X platform by applying Random Forest and Logistic Regression algorithms. The study uses 616 tweets collected through web crawling with relevant keywords such as "Boikot", "Israel", an...

Full description

Saved in:
Bibliographic Details
Main Authors: Rachmayanti Tri Agustin, Yana Cahyana, Kiki Ahmad Baihaqi, Tatang Rohana
Format: Article
Language:English
Published: Politeknik Negeri Batam 2025-06-01
Series:Journal of Applied Informatics and Computing
Subjects:
Online Access:https://jurnal.polibatam.ac.id/index.php/JAIC/article/view/9551
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This research aims to analyze public sentiment toward the boycott movement against Israel on the X platform by applying Random Forest and Logistic Regression algorithms. The study uses 616 tweets collected through web crawling with relevant keywords such as "Boikot", "Israel", and "Palestine", covering the period from March 1, 2023 to January 30, 2025. The dataset underwent preprocessing including cleaning, normalization, stopword removal, tokenization, and stemming. Sentiment labeling was conducted both manually, categorizing the data into positive, negative, and neutral classes. TF-IDF was used for feature weighting. The data was split into 80% training and 20% testing. The Random Forest model achieved an accuracy of 70%, while Logistic Regression reached 68%. Both models showed higher accuracy in predicting positive sentiment compared to negative and neutral. The results suggest that public opinion on the boycott movement on social media tends to be supportive, with “Boikot,” “Israel,” and “Palestine” being the most dominant terms. Random Forest performed slightly better in classification, though improvements are needed in recognizing non-positive sentiments.
ISSN:2548-6861