Bias-Reduced Localization for Drone Swarm Based on Sensor Selection

To address the problem of accurate localization of high-speed drone swarm intrusions, this paper adopts time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements, aiming to improve the performance of estimating the motion state of drone swarms. To this end, a two-step...

Full description

Saved in:
Bibliographic Details
Main Authors: Bo Wu, Bazhong Shen, Yonggan Zhang, Li Yang, Zhiguo Wang
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/13/4034
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To address the problem of accurate localization of high-speed drone swarm intrusions, this paper adopts time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements, aiming to improve the performance of estimating the motion state of drone swarms. To this end, a two-step strategy is proposed in this study. Firstly, a small number of sensor nodes with random locations are selected in the wireless sensor network, and the constraint-weighted least squares (CWLS) method is used to obtain the rough position and speed information of the drone swarm. Based on this rough information, the objective function of node optimization is constructed and solved using the randomized semidefinite program (SDP) algorithm proposed in this paper to screen out the sensor nodes with optimal localization performance. Secondly, the sensor nodes screened in the first step are used to re-localize the drone swarm, and the CWLS problem is constructed by combining the TDOA and FDOA measurements, and a deviation elimination scheme is proposed to further improve the localization accuracy of the drone swarm. Simulation results show that the randomized SDP algorithm proposed in this paper has the optimal localization effect, and moreover, the bias reduction scheme proposed in this paper can make the localization error of the drone swarm reach the Cramér–Rao Lower Bound (CRLB) with a low signal-to-noise ratio (SNR).
ISSN:1424-8220