Bayesian Optimization-Based State-of-Charge Estimation with Temperature Drift Compensation for Lithium-Ion Batteries

With the widespread application of electric vehicles and electrical energy storage systems, the accurate monitoring of lithium battery states has become crucial for ensuring safety and improving efficiency in terms of the applications. For this reason, this study proposes an algorithm focusing on Ba...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhen-Rong Yuan, Ke-Feng Huang, Cai-Hua Xu, Jun-Chao Zou, Jun Yan
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Batteries
Subjects:
Online Access:https://www.mdpi.com/2313-0105/11/7/243
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the widespread application of electric vehicles and electrical energy storage systems, the accurate monitoring of lithium battery states has become crucial for ensuring safety and improving efficiency in terms of the applications. For this reason, this study proposes an algorithm focusing on Bayesian optimization-based adaptive extended Kalman filter (BO-AEKF) to enhance the numerical accuracy and stability of state-of-charge (SOC) estimation for lithium batteries under various operating conditions. By comparing with traditional methods, the proposed algorithm, introducing a temperature-adaptive mechanism and a dynamic parameter updating strategy, can effectively address the estimation limitations under severe temperature variations and initial SOC uncertainties. Experimental results demonstrate that the proposed algorithm exhibits superior estimation performance at different temperatures, including −10 °C, 0 °C, 25 °C, and 50 °C; particularly under dynamic operating conditions, the maximum error (MAX) and root mean square error (RMSE) are reduced by 51.9% and 74.5%, respectively, compared to the extended Kalman filter (EKF) and adaptive extended Kalman filter (AEKF) algorithms. Furthermore, the BO-AEKF achieves rapid convergence even with unknown initial SOC values, demonstrating its robustness and adaptability. These findings provide more reliable technical support for the development of battery management systems, making them suitable for state estimation in electric vehicles and renewable energy storage systems.
ISSN:2313-0105