Allocation of Single and Multiple Multi-Type Distributed Generators in Radial Distribution Network Using Mountain Gazelle Optimizer

The growing demand for clean, reliable and efficient power supply has driven the adoption of renewable energy sources in the package of distributed generation (DG) at the distribution segment of the power system. Despite advancements in DG allocation methodologies, a significant research gap exists...

Full description

Saved in:
Bibliographic Details
Main Authors: Sunday Adeleke Salimon, Ifeoluwa Olajide Fajinmi, Olubunmi Onadayo Onatoyinbo, Oyeniyi Akeem Alimi
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Technologies
Subjects:
Online Access:https://www.mdpi.com/2227-7080/13/7/265
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The growing demand for clean, reliable and efficient power supply has driven the adoption of renewable energy sources in the package of distributed generation (DG) at the distribution segment of the power system. Despite advancements in DG allocation methodologies, a significant research gap exists regarding the simultaneous evaluation of DG sizing, location and power factor optimization, and their economic implications. This study presents the Mountain Gazelle Optimizer (MGO), a recent optimization approach to address the challenges of sizing, locating, and optimizing the power factor of multi-type DG units in a radial distribution network (RDN). In this work, the MGO is employed to reduce voltage variations, reactive power losses, real power losses, and costs while improving the bus voltage in the RDNs. The methodology involves extensive simulations across multiple scenarios covering one to three DG allocations with varying power factors (unity, fixed, and optimal). Key performance metrics evaluated included real and reactive loss reductions, voltage profile index (VPI), voltage stability index (VSI), and cost reductions due to energy losses compared to base cases. The proposed approach was implemented on the standard 33- and 69-bus networks, and the findings demonstrate that the MGO much outperforms other optimization approaches in the existing literature, realizing considerable decreases in real power losses (up to 98.10%) and reactive power losses (up to 93.38%), alongside notable cost savings. This research showcases the critical importance of optimizing DG power factors, a largely neglected aspect in most prior studies. In conclusion, this work fills a vital gap by integrating power factor optimization into the DG allocation framework, offering a comprehensive approach to enhancing the electricity distribution networks’ dependability, efficacy, and sustainability.
ISSN:2227-7080