Design and Performance of a Neurosurgery Assisting Device

This paper presents a new design solution for a neurosurgery-assisting device (NeurADe) based on a 3-RPS parallel kinematic mechanism. The NeurADe design employs compact linear actuators to accurately insert a cannula into specific areas of the brain. The CAD design and assembly of a prototype are d...

Full description

Saved in:
Bibliographic Details
Main Authors: Karla Nayeli Silva-Garcés, Marco Ceccarelli, Matteo Russo, Christopher René Torres-SanMiguel
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Biomimetics
Subjects:
Online Access:https://www.mdpi.com/2313-7673/10/6/345
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a new design solution for a neurosurgery-assisting device (NeurADe) based on a 3-RPS parallel kinematic mechanism. The NeurADe design employs compact linear actuators to accurately insert a cannula into specific areas of the brain. The CAD design and assembly of a prototype are discussed in this paper. The preliminary NeurADe prototype features 3D printed parts and incorporates mechanical and electrical components, which are designed for ease of use and lightweight functionality. For design validation and operational characterization, sensors measuring current, acceleration, and force data were utilized, and testing results are discussed to prove the feasibility of the proposed design.
ISSN:2313-7673