Spatial Distribution Characteristics and Driving Factors of Formicidae in Small Watersheds of Loess Hilly Regions

This study takes the Jinfoping Small Watershed in the Loess Hilly Region as the research area. Through field investigation and laboratory analysis, combined with methods such as spatial autocorrelation analysis, the ordinary least squares method (OLS), and the geographically weighted regression mode...

Full description

Saved in:
Bibliographic Details
Main Authors: Yu Tian, Fangfang Qiang, Guangquan Liu, Changhai Liu, Ning Ai
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Insects
Subjects:
Online Access:https://www.mdpi.com/2075-4450/16/6/630
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study takes the Jinfoping Small Watershed in the Loess Hilly Region as the research area. Through field investigation and laboratory analysis, combined with methods such as spatial autocorrelation analysis, the ordinary least squares method (OLS), and the geographically weighted regression model (GWR), it deeply explores the spatial distribution characteristics and driving factors of Formicidae in the study area. The research results are as follows: (1) Spatial autocorrelation analysis indicates that the distribution of Formicidae is significantly regulated by spatial dependence and has significant spatial autocorrelation (global Moran’s I = 0.332; <i>p</i> < 0.01). (2) The spatial visualization analysis of the GWR model reveals that soil physical and chemical properties and topographic factors have local influences on the spatial distribution of Formicidae. Available phosphorus (AP) and slope (SLP) were significantly positively correlated with the number of ants. Hydrogen peroxidase (HP) and topographic relief (TR) were significantly negatively correlated with the number of ants. This study reveals the spatial distribution pattern of Formicidae in the Loess Hilly Region and its complex relationship with environmental factors, and clarifies the importance of considering spatial heterogeneity when analyzing ecosystem processes. The research results provide a scientific basis for the protection and management of soil ecosystems, and also offer new methods and ideas for future related research.
ISSN:2075-4450