Mechanism of Improved Luminescence Intensity of Ultraviolet Light Emitting Diodes (UV-LEDs) Under Thermal and Chemical Treatments
In this work, the influences of thermal annealing and chemical passivation on the optical and electrical properties of ultraviolet light-emitting-diode (UV-LED) were investigated. The electroluminescence (EL) intensities of the LEDs under KOH treatment and thermal annealing increased by 48% and 81%,...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2019-01-01
|
Series: | IEEE Photonics Journal |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8884718/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, the influences of thermal annealing and chemical passivation on the optical and electrical properties of ultraviolet light-emitting-diode (UV-LED) were investigated. The electroluminescence (EL) intensities of the LEDs under KOH treatment and thermal annealing increased by 48% and 81%, respectively compared to as-fabricated LED under current level of 10 mA. Cathodoluminescence (CL) mapping of UV-LEDs confirmed no variation of the density of the non-radiative recombination centers after surface treatments, and no obvious change in surface morphology was identified due to lacking of energy for surface atom migration. However, Raman spectroscopy indicates a relaxation of compressive strains inside the thin film after both thermal and chemical treatments, and conductive atomic force microscopy (c-AFM) also illustrated reduced leakage current after KOH passivation, which are responsible for the improved luminescence properties of UV-LEDs. |
---|---|
ISSN: | 1943-0655 |