Color Development Characteristic and Kinetic Modeling of Maillard Reaction in Membrane-Clarified Sugarcane Juice During Vacuum Evaporation Process

This study systematically investigated the evolution of color values and the reaction kinetics of the Maillard reaction in membrane-clarified sugarcane juice during the vacuum evaporation process, providing a theoretical basis for pigment regulation in white sugar production. Content changes in the...

Full description

Saved in:
Bibliographic Details
Main Authors: Meiyi Han, Hongkui Zhao, Zhihua Liu, Jing Liu, Xi Liu, Fangxue Hang, Kai Li, Caifeng Xie
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Foods
Subjects:
Online Access:https://www.mdpi.com/2304-8158/14/12/2136
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study systematically investigated the evolution of color values and the reaction kinetics of the Maillard reaction in membrane-clarified sugarcane juice during the vacuum evaporation process, providing a theoretical basis for pigment regulation in white sugar production. Content changes in the reactants (sucrose, glucose, fructose, and free amino acids), the precursors of melanoidins including 3-deoxyglucosone, 5-hydroxymethylfurfural, glyoxal, methylglyoxal, carboxymethyl lysine, and melanoidin, were monitored during the thermal processing of membrane-clarified sugarcane juice (MCSJ), and the reaction mechanism was investigated via kinetic modeling. The zero-level, first-level, and second-level kinetic models could represent the change in L* and b*, and the zero-level kinetic model best fit the change in a* and ΔE*. The multi-response kinetics revealed that the main pathway of melanoidins in MCSJ model systems was that glucose and fructose were mutually isomerized into 1,2-enediol to generate 3-DG and then degraded to produce 5-HMF. Subsequently, 5-HMF further reacted to produce melanoidins.
ISSN:2304-8158