Fuzzy-Adaptive Nonsingular Terminal Sliding Mode Control for the High-Speed Aircraft Actuator Trajectory Tracking

High-speed aircraft actuators are critical for precise control of aerodynamic surfaces, demanding fast response, accuracy, and robustness against uncertainties and disturbances. However, the complex nonlinear dynamics of these systems pose significant challenges for conventional control methods. Sli...

Full description

Saved in:
Bibliographic Details
Main Authors: Tieniu Chen, Xiaozhou He, Yunjiang Lou, Houde Liu, Lunfei Liang, Kunfeng Zhang
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Aerospace
Subjects:
Online Access:https://www.mdpi.com/2226-4310/12/7/578
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High-speed aircraft actuators are critical for precise control of aerodynamic surfaces, demanding fast response, accuracy, and robustness against uncertainties and disturbances. However, the complex nonlinear dynamics of these systems pose significant challenges for conventional control methods. Sliding mode control (SMC) offers robust performance and rapid transient response but is hindered by chattering, which can degrade performance. To address this, this paper proposes an innovative nonlinear control strategy that integrates global nonsingular terminal sliding mode control (NTSMC) for finite-time convergence with fuzzy logic-based adaptive gain tuning to mitigate chattering and suppress oscillations. A prototype actuator and experimental platform were developed to validate the approach. Experimental results demonstrate superior dynamic response and disturbance rejection compared to traditional methods, highlighting the effectiveness of the proposed control strategy.
ISSN:2226-4310