On Usage of Artificial Intelligence for Predicting Neonatal Diseases, Conditions, and Mortality: A Bibliometric Review

Purpose: Care and attention during the neonatal period are crucial to preventing negative outcomes. The literature presents artificial intelligence models as promising tools to assist healthcare professionals in disease prediction and support clinical decision-making. Methods: This study conducts a...

Full description

Saved in:
Bibliographic Details
Main Authors: Flavio Leandro de Morais, Raysa Carla Leal da Silva, Anna Beatriz Silva, Estefani Pontes Simao, Maria Eduarda Ferro de Mello, Stephany Paula da Silva Canejo, Katia Maria Mendes, Waldemar Brandao Neto, Jackson Raniel Florencio da Silva, Maicon Herverton Lino Ferreira da Silva Barros, Patricia Takako Endo
Format: Article
Language:English
Published: IEEE 2025-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/11048493/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1839617304910888960
author Flavio Leandro de Morais
Raysa Carla Leal da Silva
Anna Beatriz Silva
Estefani Pontes Simao
Maria Eduarda Ferro de Mello
Stephany Paula da Silva Canejo
Katia Maria Mendes
Waldemar Brandao Neto
Jackson Raniel Florencio da Silva
Maicon Herverton Lino Ferreira da Silva Barros
Patricia Takako Endo
author_facet Flavio Leandro de Morais
Raysa Carla Leal da Silva
Anna Beatriz Silva
Estefani Pontes Simao
Maria Eduarda Ferro de Mello
Stephany Paula da Silva Canejo
Katia Maria Mendes
Waldemar Brandao Neto
Jackson Raniel Florencio da Silva
Maicon Herverton Lino Ferreira da Silva Barros
Patricia Takako Endo
author_sort Flavio Leandro de Morais
collection DOAJ
description Purpose: Care and attention during the neonatal period are crucial to preventing negative outcomes. The literature presents artificial intelligence models as promising tools to assist healthcare professionals in disease prediction and support clinical decision-making. Methods: This study conducts a bibliometric review of the use of artificial intelligence models in predicting neonatal diseases, conditions and mortality. The review analyzed publications from 2014 to 2024. A total of 629 studies were selected after applying selection criteria. Subsequently, analyses of collaboration networks, keyword co-occurrence, citations and cluster analysis were performed. Results: The results show that the United States, China and the United Kingdom lead scientific production and international collaborations. 12 neonatal diseases were identified, with emphasis on “retinopathy of prematurity”, “necrotizing enterocolitis” and “bronchopulmonary dysplasia”; 7 clinical conditions, including “prematurity”, “perinatal asphyxia” and “jaundice”; and 5 neonatal outcomes, mainly “sepsis”, “mortality” and “cerebral palsy.” Cluster analysis revealed that studies predominantly use clinical, laboratory, genetic and imaging data, with Logistic Regression, Random Forest and Convolutional. Conclusion: The study has growing interest in applying artificial intelligence to neonatal care. The models are increasingly used with clinical, laboratory, genetic and imaging data, enabling earlier and more accurate diagnoses. However, the study also underscores important ethical considerations, such as data quality, algorithmic transparency and equitable access to these technologies, particularly in underrepresented regions, with scientific production uneven and limited participation from low- and middle-income countries.
format Article
id doaj-art-a0cb6e8c554d4e23b162f28ce57f1822
institution Matheson Library
issn 2169-3536
language English
publishDate 2025-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj-art-a0cb6e8c554d4e23b162f28ce57f18222025-07-24T23:01:18ZengIEEEIEEE Access2169-35362025-01-011312229412231410.1109/ACCESS.2025.358250311048493On Usage of Artificial Intelligence for Predicting Neonatal Diseases, Conditions, and Mortality: A Bibliometric ReviewFlavio Leandro de Morais0https://orcid.org/0000-0001-9218-2523Raysa Carla Leal da Silva1https://orcid.org/0009-0004-8271-4687Anna Beatriz Silva2https://orcid.org/0009-0008-0826-0030Estefani Pontes Simao3https://orcid.org/0009-0000-9020-4581Maria Eduarda Ferro de Mello4https://orcid.org/0000-0002-1763-0071Stephany Paula da Silva Canejo5https://orcid.org/0000-0001-6216-1035Katia Maria Mendes6Waldemar Brandao Neto7https://orcid.org/0000-0003-4786-9961Jackson Raniel Florencio da Silva8https://orcid.org/0000-0002-4355-7410Maicon Herverton Lino Ferreira da Silva Barros9https://orcid.org/0000-0002-0275-3298Patricia Takako Endo10https://orcid.org/0000-0002-9163-5583Programa de Pós-Graduação em Engenharia da Computação (PPGEC), Universidade de Pernambuco (UPE), Recife, Pernambuco, BrazilBacharelado em Sistemas de Informação, Universidade de Pernambuco (UPE), Caruaru, Pernambuco, BrazilPrograma de Pós-Graduação em Engenharia da Computação (PPGEC), Universidade de Pernambuco (UPE), Recife, Pernambuco, BrazilPrograma de Pós-Graduação em Engenharia da Computação (PPGEC), Universidade de Pernambuco (UPE), Recife, Pernambuco, BrazilPrograma de Pós-Graduação em Engenharia da Computação (PPGEC), Universidade de Pernambuco (UPE), Recife, Pernambuco, BrazilPrograma Associado de Pós-Graduação em Enfermagem (PAPGEnf), Universidade de Pernambuco (UPE), Recife, Pernambuco, BrazilCentro Universitário Integrado de Saúde Amaury de Medeiros (CISAM), Universidade de Pernambuco (UPE), Recife, Pernambuco, BrazilPrograma Associado de Pós-Graduação em Enfermagem (PAPGEnf), Universidade de Pernambuco (UPE), Recife, Pernambuco, BrazilBacharelado em Sistemas de Informação, Universidade de Pernambuco (UPE), Caruaru, Pernambuco, BrazilPrograma de Pós-Graduação em Engenharia da Computação (PPGEC), Universidade de Pernambuco (UPE), Recife, Pernambuco, BrazilPrograma de Pós-Graduação em Engenharia da Computação (PPGEC), Universidade de Pernambuco (UPE), Recife, Pernambuco, BrazilPurpose: Care and attention during the neonatal period are crucial to preventing negative outcomes. The literature presents artificial intelligence models as promising tools to assist healthcare professionals in disease prediction and support clinical decision-making. Methods: This study conducts a bibliometric review of the use of artificial intelligence models in predicting neonatal diseases, conditions and mortality. The review analyzed publications from 2014 to 2024. A total of 629 studies were selected after applying selection criteria. Subsequently, analyses of collaboration networks, keyword co-occurrence, citations and cluster analysis were performed. Results: The results show that the United States, China and the United Kingdom lead scientific production and international collaborations. 12 neonatal diseases were identified, with emphasis on “retinopathy of prematurity”, “necrotizing enterocolitis” and “bronchopulmonary dysplasia”; 7 clinical conditions, including “prematurity”, “perinatal asphyxia” and “jaundice”; and 5 neonatal outcomes, mainly “sepsis”, “mortality” and “cerebral palsy.” Cluster analysis revealed that studies predominantly use clinical, laboratory, genetic and imaging data, with Logistic Regression, Random Forest and Convolutional. Conclusion: The study has growing interest in applying artificial intelligence to neonatal care. The models are increasingly used with clinical, laboratory, genetic and imaging data, enabling earlier and more accurate diagnoses. However, the study also underscores important ethical considerations, such as data quality, algorithmic transparency and equitable access to these technologies, particularly in underrepresented regions, with scientific production uneven and limited participation from low- and middle-income countries.https://ieeexplore.ieee.org/document/11048493/Artificial intelligencebibliometric reviewneonatal healthcare
spellingShingle Flavio Leandro de Morais
Raysa Carla Leal da Silva
Anna Beatriz Silva
Estefani Pontes Simao
Maria Eduarda Ferro de Mello
Stephany Paula da Silva Canejo
Katia Maria Mendes
Waldemar Brandao Neto
Jackson Raniel Florencio da Silva
Maicon Herverton Lino Ferreira da Silva Barros
Patricia Takako Endo
On Usage of Artificial Intelligence for Predicting Neonatal Diseases, Conditions, and Mortality: A Bibliometric Review
IEEE Access
Artificial intelligence
bibliometric review
neonatal healthcare
title On Usage of Artificial Intelligence for Predicting Neonatal Diseases, Conditions, and Mortality: A Bibliometric Review
title_full On Usage of Artificial Intelligence for Predicting Neonatal Diseases, Conditions, and Mortality: A Bibliometric Review
title_fullStr On Usage of Artificial Intelligence for Predicting Neonatal Diseases, Conditions, and Mortality: A Bibliometric Review
title_full_unstemmed On Usage of Artificial Intelligence for Predicting Neonatal Diseases, Conditions, and Mortality: A Bibliometric Review
title_short On Usage of Artificial Intelligence for Predicting Neonatal Diseases, Conditions, and Mortality: A Bibliometric Review
title_sort on usage of artificial intelligence for predicting neonatal diseases conditions and mortality a bibliometric review
topic Artificial intelligence
bibliometric review
neonatal healthcare
url https://ieeexplore.ieee.org/document/11048493/
work_keys_str_mv AT flavioleandrodemorais onusageofartificialintelligenceforpredictingneonataldiseasesconditionsandmortalityabibliometricreview
AT raysacarlalealdasilva onusageofartificialintelligenceforpredictingneonataldiseasesconditionsandmortalityabibliometricreview
AT annabeatrizsilva onusageofartificialintelligenceforpredictingneonataldiseasesconditionsandmortalityabibliometricreview
AT estefanipontessimao onusageofartificialintelligenceforpredictingneonataldiseasesconditionsandmortalityabibliometricreview
AT mariaeduardaferrodemello onusageofartificialintelligenceforpredictingneonataldiseasesconditionsandmortalityabibliometricreview
AT stephanypauladasilvacanejo onusageofartificialintelligenceforpredictingneonataldiseasesconditionsandmortalityabibliometricreview
AT katiamariamendes onusageofartificialintelligenceforpredictingneonataldiseasesconditionsandmortalityabibliometricreview
AT waldemarbrandaoneto onusageofartificialintelligenceforpredictingneonataldiseasesconditionsandmortalityabibliometricreview
AT jacksonranielflorenciodasilva onusageofartificialintelligenceforpredictingneonataldiseasesconditionsandmortalityabibliometricreview
AT maiconhervertonlinoferreiradasilvabarros onusageofartificialintelligenceforpredictingneonataldiseasesconditionsandmortalityabibliometricreview
AT patriciatakakoendo onusageofartificialintelligenceforpredictingneonataldiseasesconditionsandmortalityabibliometricreview