A Robust Adaptive Strategy for Diesel Particulate Filter Health Monitoring Using Soot Sensor Data

The transportation sector mainly relied on fossil fuel and is one of the major causes of climate change and environmental pollution. Advances in smart sensing technology are paving the way for the development of clean and intelligent vehicles that lead to a more sustainable transportation system. In...

Full description

Saved in:
Bibliographic Details
Main Author: Bilal Youssef
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Vehicles
Subjects:
Online Access:https://www.mdpi.com/2624-8921/7/2/39
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The transportation sector mainly relied on fossil fuel and is one of the major causes of climate change and environmental pollution. Advances in smart sensing technology are paving the way for the development of clean and intelligent vehicles that lead to a more sustainable transportation system. In response, the automotive industry is actively engaging in new sensor technologies and innovative control and diagnostic algorithms that improve energy sustainability and reduce vehicle emissions. In particular, recent regulations for diesel vehicles require the integration of smart soot sensors to deal with particulate filter on-board diagnostic (OBD) challenges. Meeting the recent, more stringent OBD requirements will be difficult using traditional diagnostic approaches. This study investigates an advanced diagnostic strategy to assess particulate filter health based on resistive soot sensors and available engine variables. The sensor data are projected to generate a 2D signature that reflects the changes in filtration efficiency. A relevant feature (character) is then extracted from the generated signature that can be transformed into an analytical expression used as an indicator of DPF malfunction. The diagnostic strategy uses an adaptive approach that dynamically adjusts the signature’s characters according to the engine’s operating conditions. A correction factor is calculated using an optimization algorithm based on the integral of engine speed measurements and IMEP set points during each sensor loading period. Different cost functions have been tested and evaluated to improve the diagnostic performance. The proposed adaptive approach is model-free and eliminates the need for subsystem models, iterative algorithms, and extensive calibration procedures. Furthermore, the time-consuming and inaccurate estimation of soot emissions upstream of the DPF is avoided. It was evaluated on a validated numerical platform under NEDC driving conditions with simultaneous dispersions on engine-out soot concentration and soot sensor measurements. The promising results highlight the robustness and superior performance of this approach compared to a diagnostic strategy solely reliant on sensor data.
ISSN:2624-8921