Analisis Sentimen Masyarakat Indonesia terhadap Pemindahan Ibu Kota Negara Indonesia pada Twitter

The relocation state capital of Indonesia raises various responses, especially from the Indonesian people.  The discussion related to these issues is very interesting to study, how are the positive and negative sentiments of the Indonesian towards the government's decision. This study aims to a...

Full description

Saved in:
Bibliographic Details
Main Authors: Sri Lestari, Mupaat Mupaat, Adhitia Erfina
Format: Article
Language:Indonesian
Published: Program Studi Sistem Informasi, Universitas Islam Negeri Raden Fatah Palembang 2022-06-01
Series:Jurnal Sistem Informasi
Subjects:
Online Access:https://jurnal.radenfatah.ac.id/index.php/jusifo/article/view/12116
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1839650621386391552
author Sri Lestari
Mupaat Mupaat
Adhitia Erfina
author_facet Sri Lestari
Mupaat Mupaat
Adhitia Erfina
author_sort Sri Lestari
collection DOAJ
description The relocation state capital of Indonesia raises various responses, especially from the Indonesian people.  The discussion related to these issues is very interesting to study, how are the positive and negative sentiments of the Indonesian towards the government's decision. This study aims to analyze the sentiments of the Indonesian people regarding the relocation state capital of Indonesia, including the chosen name of Nusantara on Twitter. In this study, a comparison of 3 algorithms is used, namely the Support Vector Machine (SVM), Naïve Bayes, and K-Nearest Neighbor (KNN) algorithms. From this study, the results obtained are 1,141 positive comments, while negative sentiments are 591 comments. This shows that the Indonesian people have a positive opinion towards the new capital city of Indonesia. In the classification and model testing phase, 10-fold cross validation is used. From these tests, the SVM algorithm obtained an accuracy value of 85.71%, the Naïve Bayes algorithm obtained an accuracy value of 76.70%, the KNN algorithm obtained an accuracy value of 52.74%. This study shows that the SVM algorithm can work better than the Naïve Bayes algorithm and KNN. The accuracy value for the KNN algorithm obtains a low value, this is because the KNN algorithm is sensitive to features that are less relevant.
format Article
id doaj-art-a0a33a14470d4082b5ee61a569dbe21a
institution Matheson Library
issn 2460-092X
2623-1662
language Indonesian
publishDate 2022-06-01
publisher Program Studi Sistem Informasi, Universitas Islam Negeri Raden Fatah Palembang
record_format Article
series Jurnal Sistem Informasi
spelling doaj-art-a0a33a14470d4082b5ee61a569dbe21a2025-06-27T02:47:02ZindProgram Studi Sistem Informasi, Universitas Islam Negeri Raden Fatah PalembangJurnal Sistem Informasi2460-092X2623-16622022-06-0181132210.19109/jusifo.v8i1.121169823Analisis Sentimen Masyarakat Indonesia terhadap Pemindahan Ibu Kota Negara Indonesia pada TwitterSri Lestari0Mupaat Mupaat1Adhitia Erfina2Universitas Nusa PutraUniversitas Nusa PutraUniversitas Nusa PutraThe relocation state capital of Indonesia raises various responses, especially from the Indonesian people.  The discussion related to these issues is very interesting to study, how are the positive and negative sentiments of the Indonesian towards the government's decision. This study aims to analyze the sentiments of the Indonesian people regarding the relocation state capital of Indonesia, including the chosen name of Nusantara on Twitter. In this study, a comparison of 3 algorithms is used, namely the Support Vector Machine (SVM), Naïve Bayes, and K-Nearest Neighbor (KNN) algorithms. From this study, the results obtained are 1,141 positive comments, while negative sentiments are 591 comments. This shows that the Indonesian people have a positive opinion towards the new capital city of Indonesia. In the classification and model testing phase, 10-fold cross validation is used. From these tests, the SVM algorithm obtained an accuracy value of 85.71%, the Naïve Bayes algorithm obtained an accuracy value of 76.70%, the KNN algorithm obtained an accuracy value of 52.74%. This study shows that the SVM algorithm can work better than the Naïve Bayes algorithm and KNN. The accuracy value for the KNN algorithm obtains a low value, this is because the KNN algorithm is sensitive to features that are less relevant.https://jurnal.radenfatah.ac.id/index.php/jusifo/article/view/12116iknsentiment analysistwitter
spellingShingle Sri Lestari
Mupaat Mupaat
Adhitia Erfina
Analisis Sentimen Masyarakat Indonesia terhadap Pemindahan Ibu Kota Negara Indonesia pada Twitter
Jurnal Sistem Informasi
ikn
sentiment analysis
twitter
title Analisis Sentimen Masyarakat Indonesia terhadap Pemindahan Ibu Kota Negara Indonesia pada Twitter
title_full Analisis Sentimen Masyarakat Indonesia terhadap Pemindahan Ibu Kota Negara Indonesia pada Twitter
title_fullStr Analisis Sentimen Masyarakat Indonesia terhadap Pemindahan Ibu Kota Negara Indonesia pada Twitter
title_full_unstemmed Analisis Sentimen Masyarakat Indonesia terhadap Pemindahan Ibu Kota Negara Indonesia pada Twitter
title_short Analisis Sentimen Masyarakat Indonesia terhadap Pemindahan Ibu Kota Negara Indonesia pada Twitter
title_sort analisis sentimen masyarakat indonesia terhadap pemindahan ibu kota negara indonesia pada twitter
topic ikn
sentiment analysis
twitter
url https://jurnal.radenfatah.ac.id/index.php/jusifo/article/view/12116
work_keys_str_mv AT srilestari analisissentimenmasyarakatindonesiaterhadappemindahanibukotanegaraindonesiapadatwitter
AT mupaatmupaat analisissentimenmasyarakatindonesiaterhadappemindahanibukotanegaraindonesiapadatwitter
AT adhitiaerfina analisissentimenmasyarakatindonesiaterhadappemindahanibukotanegaraindonesiapadatwitter