Time Dynamics of Systemic Risk in Banking Networks: A UEDR-PDE Approach

Understanding the time dynamics of systemic risk in banking networks is crucial for preventing financial crises and ensuring economic stability. This paper aims to quantify key transition times in the evolution of distress within a banking system using a mathematical framework. We investigate the dy...

Full description

Saved in:
Bibliographic Details
Main Authors: Irène Irakoze, Dennis Ikpe, Fulgence Nahayo, Samuel Asante Gyamerah
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:AppliedMath
Subjects:
Online Access:https://www.mdpi.com/2673-9909/5/2/54
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1839654986208772096
author Irène Irakoze
Dennis Ikpe
Fulgence Nahayo
Samuel Asante Gyamerah
author_facet Irène Irakoze
Dennis Ikpe
Fulgence Nahayo
Samuel Asante Gyamerah
author_sort Irène Irakoze
collection DOAJ
description Understanding the time dynamics of systemic risk in banking networks is crucial for preventing financial crises and ensuring economic stability. This paper aims to quantify key transition times in the evolution of distress within a banking system using a mathematical framework. We investigate the dynamics of systemic risk in a hypothetical, homogeneous banking network using the Undistressed–Exposed–Distressed–Recovered (UEDR) model. The UEDR model, inspired by compartmental epidemic frameworks, captures how financial distress propagates and recedes through interactions between banks. It is selected because of its tractability and its ability to distinguish between different stages of bank vulnerability. We focus on two critical times, denoted as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>t</mi><mn>1</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>t</mi><mn>2</mn></msub></semantics></math></inline-formula>, which play a fundamental role in understanding the behavior of the distressed compartment (representing the number of distressed banks) over time. The time <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>t</mi><mn>1</mn></msub></semantics></math></inline-formula> represents the first instance of a decrease in the number of distressed banks, indicating the containment of systemic risk. On the other hand, the time <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>t</mi><mn>2</mn></msub></semantics></math></inline-formula> marks the onset when the number of undistressed banks falls below a specified threshold, signifying the restoration of financial stability. We examine these time dependencies by considering the initial conditions of the UEDR model and assess their characteristics using partial differential equations. We establish the continuity, smoothness, and uniqueness of solutions for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>t</mi><mn>1</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>t</mi><mn>2</mn></msub></semantics></math></inline-formula>, along with their corresponding boundary conditions. Furthermore, we provide explicit representation formulas for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>t</mi><mn>1</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>t</mi><mn>2</mn></msub></semantics></math></inline-formula>, allowing for precise estimation when the initial population compartments are large. Our results provide practical insights for financial regulators and policymakers in determining time-sensitive interventions for mitigating systemic risk and accelerating recovery in banking systems. The findings highlight how mathematical modeling can inform real-time risk management strategies in financial networks.
format Article
id doaj-art-9f44e4976f2b4a3b840ea6b2c5b519d0
institution Matheson Library
issn 2673-9909
language English
publishDate 2025-05-01
publisher MDPI AG
record_format Article
series AppliedMath
spelling doaj-art-9f44e4976f2b4a3b840ea6b2c5b519d02025-06-25T13:24:04ZengMDPI AGAppliedMath2673-99092025-05-01525410.3390/appliedmath5020054Time Dynamics of Systemic Risk in Banking Networks: A UEDR-PDE ApproachIrène Irakoze0Dennis Ikpe1Fulgence Nahayo2Samuel Asante Gyamerah3Institute of Applied Statistics, University of Burundi, Bujumbura BP 1550, BurundiOffice of Institutional Research, Binghamton University, Binghamton, NY 13902, USAInstitute of Applied Statistics, University of Burundi, Bujumbura BP 1550, BurundiDepartment of Mathematics, Toronto Metropolitan University, Toronto, ON M5B 2K3, CanadaUnderstanding the time dynamics of systemic risk in banking networks is crucial for preventing financial crises and ensuring economic stability. This paper aims to quantify key transition times in the evolution of distress within a banking system using a mathematical framework. We investigate the dynamics of systemic risk in a hypothetical, homogeneous banking network using the Undistressed–Exposed–Distressed–Recovered (UEDR) model. The UEDR model, inspired by compartmental epidemic frameworks, captures how financial distress propagates and recedes through interactions between banks. It is selected because of its tractability and its ability to distinguish between different stages of bank vulnerability. We focus on two critical times, denoted as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>t</mi><mn>1</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>t</mi><mn>2</mn></msub></semantics></math></inline-formula>, which play a fundamental role in understanding the behavior of the distressed compartment (representing the number of distressed banks) over time. The time <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>t</mi><mn>1</mn></msub></semantics></math></inline-formula> represents the first instance of a decrease in the number of distressed banks, indicating the containment of systemic risk. On the other hand, the time <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>t</mi><mn>2</mn></msub></semantics></math></inline-formula> marks the onset when the number of undistressed banks falls below a specified threshold, signifying the restoration of financial stability. We examine these time dependencies by considering the initial conditions of the UEDR model and assess their characteristics using partial differential equations. We establish the continuity, smoothness, and uniqueness of solutions for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>t</mi><mn>1</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>t</mi><mn>2</mn></msub></semantics></math></inline-formula>, along with their corresponding boundary conditions. Furthermore, we provide explicit representation formulas for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>t</mi><mn>1</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>t</mi><mn>2</mn></msub></semantics></math></inline-formula>, allowing for precise estimation when the initial population compartments are large. Our results provide practical insights for financial regulators and policymakers in determining time-sensitive interventions for mitigating systemic risk and accelerating recovery in banking systems. The findings highlight how mathematical modeling can inform real-time risk management strategies in financial networks.https://www.mdpi.com/2673-9909/5/2/54systemic riskbank distresscritical timesfinancial contagionrisk managementepidemiological modeling
spellingShingle Irène Irakoze
Dennis Ikpe
Fulgence Nahayo
Samuel Asante Gyamerah
Time Dynamics of Systemic Risk in Banking Networks: A UEDR-PDE Approach
AppliedMath
systemic risk
bank distress
critical times
financial contagion
risk management
epidemiological modeling
title Time Dynamics of Systemic Risk in Banking Networks: A UEDR-PDE Approach
title_full Time Dynamics of Systemic Risk in Banking Networks: A UEDR-PDE Approach
title_fullStr Time Dynamics of Systemic Risk in Banking Networks: A UEDR-PDE Approach
title_full_unstemmed Time Dynamics of Systemic Risk in Banking Networks: A UEDR-PDE Approach
title_short Time Dynamics of Systemic Risk in Banking Networks: A UEDR-PDE Approach
title_sort time dynamics of systemic risk in banking networks a uedr pde approach
topic systemic risk
bank distress
critical times
financial contagion
risk management
epidemiological modeling
url https://www.mdpi.com/2673-9909/5/2/54
work_keys_str_mv AT ireneirakoze timedynamicsofsystemicriskinbankingnetworksauedrpdeapproach
AT dennisikpe timedynamicsofsystemicriskinbankingnetworksauedrpdeapproach
AT fulgencenahayo timedynamicsofsystemicriskinbankingnetworksauedrpdeapproach
AT samuelasantegyamerah timedynamicsofsystemicriskinbankingnetworksauedrpdeapproach