Perturbation response scanning of drug-target networks: Drug repurposing for multiple sclerosis
Combined with elastic network model (ENM), the perturbation response scanning (PRS) has emerged as a robust technique for pinpointing allosteric interactions within proteins. Here, we proposed the PRS analysis of drug-target networks (DTNs), which could provide a promising avenue in network medicine...
Saved in:
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2025-06-01
|
Series: | Journal of Pharmaceutical Analysis |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2095177925001121 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Combined with elastic network model (ENM), the perturbation response scanning (PRS) has emerged as a robust technique for pinpointing allosteric interactions within proteins. Here, we proposed the PRS analysis of drug-target networks (DTNs), which could provide a promising avenue in network medicine. We demonstrated the utility of the method by introducing a deep learning and network perturbation-based framework, for drug repurposing of multiple sclerosis (MS). First, the MS comorbidity network was constructed by performing a random walk with restart algorithm based on shared genes between MS and other diseases as seed nodes. Then, based on topological analysis and functional annotation, the neurotransmission module was identified as the “therapeutic module” of MS. Further, perturbation scores of drugs on the module were calculated by constructing the DTN and introducing the PRS analysis, giving a list of repurposable drugs for MS. Mechanism of action analysis both at pathway and structural levels screened dihydroergocristine as a candidate drug of MS by targeting a serotonin receptor of serotonin 2B receptor (HTR2B). Finally, we established a cuprizone-induced chronic mouse model to evaluate the alteration of HTR2B in mouse brain regions and observed that HTR2B was significantly reduced in the cuprizone-induced mouse cortex. These findings proved that the network perturbation modeling is a promising avenue for drug repurposing of MS. As a useful systematic method, our approach can also be used to discover the new molecular mechanism and provide effective candidate drugs for other complex diseases. |
---|---|
ISSN: | 2095-1779 |