Neural Optimization Techniques for Noisy-Data Observer-Based Neuro-Adaptive Control for Strict-Feedback Control Systems: Addressing Tracking and Predefined Accuracy Constraints

This research proposes a fractional-order adaptive neural control scheme using an optimized backstepping (OB) approach to address strict-feedback nonlinear systems with uncertain control directions and predefined performance requirements. The OB framework integrates both fractional-order virtual and...

Full description

Saved in:
Bibliographic Details
Main Authors: Abdulaziz Garba Ahmad, Taher Alzahrani
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/9/6/389
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This research proposes a fractional-order adaptive neural control scheme using an optimized backstepping (OB) approach to address strict-feedback nonlinear systems with uncertain control directions and predefined performance requirements. The OB framework integrates both fractional-order virtual and actual controllers to achieve global optimization, while a Nussbaum-type function is introduced to handle unknown control paths. To ensure convergence to desired accuracy within a prescribed time, a fractional-order dynamic-switching mechanism and a quartic-barrier Lyapunov function are employed. An input-to-state practically stable (ISpS) auxiliary signal is designed to mitigate unmodeled dynamics, leveraging classical lemmas adapted to fractional-order systems. The study further investigates a decentralized control scenario for large-scale stochastic nonlinear systems with uncertain dynamics, undefined control directions, and unmeasurable states. Fuzzy logic systems are employed to approximate unknown nonlinearities, while a fuzzy-phase observer is designed to estimate inaccessible states. The use of Nussbaum-type functions in decentralized architectures addresses uncertainties in control directions. A key novelty of this work lies in the combination of fractional-order adaptive control, fuzzy logic estimation, and Nussbaum-based decentralized backstepping to guarantee that all closed-loop signals remain bounded in probability. The proposed method ensures that system outputs converge to a small neighborhood around the origin, even under stochastic disturbances. The simulation results confirm the effectiveness and robustness of the proposed control strategy.
ISSN:2504-3110