Posets arising from decompositions of objects in a monoidal category

Given a symmetric monoidal category ${\mathcal C}$ with product $\sqcup $ , where the neutral element for the product is an initial object, we consider the poset of $\sqcup $ -complemented subobjects of a given object X. When this poset has finite height, we define decompositions...

Full description

Saved in:
Bibliographic Details
Main Authors: Kevin Ivan Piterman, Volkmar Welker
Format: Article
Language:English
Published: Cambridge University Press 2025-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509425100601/type/journal_article
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Given a symmetric monoidal category ${\mathcal C}$ with product $\sqcup $ , where the neutral element for the product is an initial object, we consider the poset of $\sqcup $ -complemented subobjects of a given object X. When this poset has finite height, we define decompositions and partial decompositions of X which are coherent with $\sqcup $ , and order them by refinement. From these posets, we define complexes of frames and partial bases, augmented Bergman complexes and related ordered versions. We propose a unified approach to the study of their combinatorics and homotopy type, establishing various properties and relations between them. Via explicit homotopy formulas, we will be able to transfer structural properties, such as Cohen-Macaulayness.
ISSN:2050-5094