Identification of Structural Sealant Damage in Hidden Frame Glass Curtain Wall Based on Curvature Mode

To assess structural sealant damage in hidden frame glass curtain walls (HFGCWs) during service, damage states were simulated by controlled cutting with varying incision lengths. Quantitative identification challenges were investigated through natural frequency and curvature modal difference (CMD) a...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuqin Yan, Xiangcheng Wang, Xiaonan Li, Xin Zhang, Fan Yang, Jie Sun
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/12/6568
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To assess structural sealant damage in hidden frame glass curtain walls (HFGCWs) during service, damage states were simulated by controlled cutting with varying incision lengths. Quantitative identification challenges were investigated through natural frequency and curvature modal difference (CMD) analyses at multiple test points. The results indicate that natural frequency decreases with increasing damage severity, while the first-order curvature mode difference (FCMD) exhibits localized abrupt changes in damaged regions. Boundary modes provide more targeted and accurate damage identification. The peak value of the FCMD mutation region enables precise damage localization. A quantitative damage identification threshold of 0.1205 was derived from FCMD distribution characteristics in boundary regions. By leveraging boundary mode features, modal testing efficiency is optimized, reducing the required acquisition nodes and effectively guiding structural sealant damage detection in engineering applications.
ISSN:2076-3417