The Construction of ceRNA Regulatory Network Unraveled Prognostic Biomarkers and Repositioned Drug Candidates for the Management of Pancreatic Ductal Adenocarcinoma

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancer types due to its late diagnosis, low survival rates, and high frequency of metastasis. Considering the molecular mechanism of PDAC development has not been fully elucidated, this study aimed to shed more light on the molecular...

Full description

Saved in:
Bibliographic Details
Main Authors: Busra Aydin, Keziban Okutan, Ozge Onluturk Aydogan, Raghu Sinha, Beste Turanli
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Current Issues in Molecular Biology
Subjects:
Online Access:https://www.mdpi.com/1467-3045/47/7/496
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancer types due to its late diagnosis, low survival rates, and high frequency of metastasis. Considering the molecular mechanism of PDAC development has not been fully elucidated, this study aimed to shed more light on the molecular regulatory signatures of circular RNAs (circRNAs) in PDAC progression and provide a different perspective to identify potential biomarkers as well as discover candidate repositioned drug molecules for the prevention or treatment of PDAC with network-based integrative analysis. The mRNA, miRNA, and circRNA expression profiles of PDAC were obtained from nine microarray datasets. Differentially expressed genes (DEGs), microRNAs (DEmiRNAs), and circular RNAs (DEcircRNAs) were identified. The competing endogenous RNA (ceRNA; DEG–DEmiRNA–DEcircRNA) regulatory network was constructed, which included 12 DEcircRNAs, 64 DEGs, and 6 miRNAs specific to PDAC. The <i>ADAM12</i>, <i>MET</i>, <i>QKI</i>, <i>SEC23A</i>, and <i>ZEB2</i> were identified as hub genes and demonstrated significant survival probability for PDAC. In addition to providing novel biomarkers for diagnosis that can be detected non-invasively, the secretion levels of hub genes-associated proteins were found in plasma, serum, and oral epithelium. The drug repositioning analysis revealed vorinostat, meclocycline sulfosalicylate, and trichostatin A, which exhibited significant binding affinities to the hub genes compared to their inhibitors via molecular docking analysis.
ISSN:1467-3037
1467-3045