Bioactive Properties and Phenolic Profile of Bioaccessible and Bioavailable Fractions of Red Radish Microgreens After In Vitro Digestion
The health-promoting activity of radish microgreens after consumption depends on their bioaccessibility and bioavailability. In this study, we compared the composition of phenolic compounds, their cytoprotective and anti-inflammatory activities in cell lines, and antioxidant properties of the undige...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-07-01
|
Series: | Molecules |
Subjects: | |
Online Access: | https://www.mdpi.com/1420-3049/30/14/2976 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1839615474652938240 |
---|---|
author | Dorota Sosnowska Małgorzata Zakłos-Szyda Dominika Kajszczak Anna Podsędek |
author_facet | Dorota Sosnowska Małgorzata Zakłos-Szyda Dominika Kajszczak Anna Podsędek |
author_sort | Dorota Sosnowska |
collection | DOAJ |
description | The health-promoting activity of radish microgreens after consumption depends on their bioaccessibility and bioavailability. In this study, we compared the composition of phenolic compounds, their cytoprotective and anti-inflammatory activities in cell lines, and antioxidant properties of the undigested radish microgreens with their fractions obtained after simulated in vitro digestion in the stomach, as well as in the small and large intestine. The results have demonstrated higher levels of total phenolics (by 70.35%) and total hydroxycinnamic acids (3.5 times increase), an increase in scavenging efficiency toward ABTS<sup>•+</sup> and superoxide anion radicals, and an increase in the reduction potential (FRAP method) in the gastric bioaccessible fraction. In contrast, small intestinal digestion negatively affected phenolic content (a reduction of 53.30–75.63%), except for total hydroxycinnamic acids (3-fold increase). Incubation of the non-bioavailable fraction with bacterial enzymes led to further degradation. Undigested microgreens had no negative impact on Caco-2, HT-29, and SH-SY5Y cells’ metabolism at 0.05–2 mg/mL, while all digested samples at 1 mg/mL revealed their cytotoxic potential. All samples used at a non-cytotoxic concentration showed protective activity against H<sub>2</sub>O<sub>2</sub> and corticosterone-induced oxidative stress generation as well as reduced proinflammatory cytokines production. Overall, radish microgreens may exhibit a broad spectrum of biological activities when consumed. |
format | Article |
id | doaj-art-9cf5cd8eb912430a87bd4b1f11a813b1 |
institution | Matheson Library |
issn | 1420-3049 |
language | English |
publishDate | 2025-07-01 |
publisher | MDPI AG |
record_format | Article |
series | Molecules |
spelling | doaj-art-9cf5cd8eb912430a87bd4b1f11a813b12025-07-25T13:31:57ZengMDPI AGMolecules1420-30492025-07-013014297610.3390/molecules30142976Bioactive Properties and Phenolic Profile of Bioaccessible and Bioavailable Fractions of Red Radish Microgreens After In Vitro DigestionDorota Sosnowska0Małgorzata Zakłos-Szyda1Dominika Kajszczak2Anna Podsędek3Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, PolandInstitute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, PolandInstitute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, PolandInstitute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, PolandThe health-promoting activity of radish microgreens after consumption depends on their bioaccessibility and bioavailability. In this study, we compared the composition of phenolic compounds, their cytoprotective and anti-inflammatory activities in cell lines, and antioxidant properties of the undigested radish microgreens with their fractions obtained after simulated in vitro digestion in the stomach, as well as in the small and large intestine. The results have demonstrated higher levels of total phenolics (by 70.35%) and total hydroxycinnamic acids (3.5 times increase), an increase in scavenging efficiency toward ABTS<sup>•+</sup> and superoxide anion radicals, and an increase in the reduction potential (FRAP method) in the gastric bioaccessible fraction. In contrast, small intestinal digestion negatively affected phenolic content (a reduction of 53.30–75.63%), except for total hydroxycinnamic acids (3-fold increase). Incubation of the non-bioavailable fraction with bacterial enzymes led to further degradation. Undigested microgreens had no negative impact on Caco-2, HT-29, and SH-SY5Y cells’ metabolism at 0.05–2 mg/mL, while all digested samples at 1 mg/mL revealed their cytotoxic potential. All samples used at a non-cytotoxic concentration showed protective activity against H<sub>2</sub>O<sub>2</sub> and corticosterone-induced oxidative stress generation as well as reduced proinflammatory cytokines production. Overall, radish microgreens may exhibit a broad spectrum of biological activities when consumed.https://www.mdpi.com/1420-3049/30/14/2976microgreensradishphenolic compoundsbioaccessibilitybioavailabilitycytoprotective effect |
spellingShingle | Dorota Sosnowska Małgorzata Zakłos-Szyda Dominika Kajszczak Anna Podsędek Bioactive Properties and Phenolic Profile of Bioaccessible and Bioavailable Fractions of Red Radish Microgreens After In Vitro Digestion Molecules microgreens radish phenolic compounds bioaccessibility bioavailability cytoprotective effect |
title | Bioactive Properties and Phenolic Profile of Bioaccessible and Bioavailable Fractions of Red Radish Microgreens After In Vitro Digestion |
title_full | Bioactive Properties and Phenolic Profile of Bioaccessible and Bioavailable Fractions of Red Radish Microgreens After In Vitro Digestion |
title_fullStr | Bioactive Properties and Phenolic Profile of Bioaccessible and Bioavailable Fractions of Red Radish Microgreens After In Vitro Digestion |
title_full_unstemmed | Bioactive Properties and Phenolic Profile of Bioaccessible and Bioavailable Fractions of Red Radish Microgreens After In Vitro Digestion |
title_short | Bioactive Properties and Phenolic Profile of Bioaccessible and Bioavailable Fractions of Red Radish Microgreens After In Vitro Digestion |
title_sort | bioactive properties and phenolic profile of bioaccessible and bioavailable fractions of red radish microgreens after in vitro digestion |
topic | microgreens radish phenolic compounds bioaccessibility bioavailability cytoprotective effect |
url | https://www.mdpi.com/1420-3049/30/14/2976 |
work_keys_str_mv | AT dorotasosnowska bioactivepropertiesandphenolicprofileofbioaccessibleandbioavailablefractionsofredradishmicrogreensafterinvitrodigestion AT małgorzatazakłosszyda bioactivepropertiesandphenolicprofileofbioaccessibleandbioavailablefractionsofredradishmicrogreensafterinvitrodigestion AT dominikakajszczak bioactivepropertiesandphenolicprofileofbioaccessibleandbioavailablefractionsofredradishmicrogreensafterinvitrodigestion AT annapodsedek bioactivepropertiesandphenolicprofileofbioaccessibleandbioavailablefractionsofredradishmicrogreensafterinvitrodigestion |