A Two-Step High-Order Compact Corrected WENO Scheme
In this study, we introduce a novel 2-step compact scheme-based high-order correction method for computational fluid dynamics (CFD). Unlike traditional single-formula-based schemes, our proposed approach refines flux function values by leveraging results from high-order compact schemes on the same s...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Algorithms |
Subjects: | |
Online Access: | https://www.mdpi.com/1999-4893/18/6/364 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, we introduce a novel 2-step compact scheme-based high-order correction method for computational fluid dynamics (CFD). Unlike traditional single-formula-based schemes, our proposed approach refines flux function values by leveraging results from high-order compact schemes on the same stencils, provided a certain smoothness condition is met. By applying this method, we achieve a more stable and efficient compact corrected Weighted Essentially Non-Oscillatory (WENO) scheme. The results demonstrate significant improvements across all enhanced schemes, particularly in capturing shock waves sharply and maintaining stability in complex scenarios, such as two interacting blast waves, as validated through 1D benchmark tests. In addition, error analysis is also provided for the two different correction configurations based on WENO. |
---|---|
ISSN: | 1999-4893 |