Key Influencing Factors in the Variation in Livestock Carbon Emissions in the Grassland Region of Gannan Prefecture, China (2009–2024)
Research was conducted in Gannan Prefecture, China, to better understand the characteristics of carbon emissions and sequestration in areas dominated by animal husbandry. The emission factor method was used to calculate and analyze changes in carbon emissions from 2009 to 2024. The region’s average...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Agriculture |
Subjects: | |
Online Access: | https://www.mdpi.com/2077-0472/15/12/1300 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Research was conducted in Gannan Prefecture, China, to better understand the characteristics of carbon emissions and sequestration in areas dominated by animal husbandry. The emission factor method was used to calculate and analyze changes in carbon emissions from 2009 to 2024. The region’s average annual carbon emissions from animal husbandry are 774,286 t C-eq (2,839,049 t CO<sub>2</sub>eq), with enteric emissions from cattle being the biggest contributor. However, as the number of locally raised cattle and sheep has decreased, carbon emissions have gradually fallen at an average annual rate of −1.0%. The annual average total carbon sequestration of vegetation in the region is 6,861,535 t C-eq, and the carbon content in underground biomass is higher than that in aboveground biomass, making it the main contributor to grassland carbon sequestration. Carbon sequestration from grassland vegetation is greater than the carbon emissions from animal husbandry, which means that the entire production system is currently a carbon sink. Meanwhile, the analysis of land-use carbon sequestration found that the annual average total sequestration by forests and grasslands over the same time period was 752,327 t C-eq, and sequestration is increasing at an annual rate of 1.4%, primarily driven by the progressive expansion of forested areas. Although the regional carbon emissions from animal husbandry are lower than the carbon sequestration, developing a science-based animal husbandry plan aligned with regional ecological thresholds, continuing to implement grass–livestock balance management measures, and preventing livestock numbers from exceeding their ecological carrying capacity remain critical to promoting sustainable coordination between livestock economies and ecological conservation. |
---|---|
ISSN: | 2077-0472 |