Frequency Noise Characterization of a 25-GHz Diode-Pumped Mode-Locked Laser With Indirect Carrier-Envelope Offset Noise Assessment

We present a detailed frequency noise characterization of an ultrafast diode-pumped solid-state laser operating at 25-GHz repetition rate. The laser is based on the gain material Er:Yb:glass and operates at a wavelength of 1.55 μm. Using a beating measurement with an ultralow-n...

Full description

Saved in:
Bibliographic Details
Main Authors: Pierre Brochard, Valentin Johannes Wittwer, Slawomir Bilicki, Bojan Resan, Kurt John Weingarten, Stephane Schilt, Thomas Sudmeyer
Format: Article
Language:English
Published: IEEE 2018-01-01
Series:IEEE Photonics Journal
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8240971/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a detailed frequency noise characterization of an ultrafast diode-pumped solid-state laser operating at 25-GHz repetition rate. The laser is based on the gain material Er:Yb:glass and operates at a wavelength of 1.55 μm. Using a beating measurement with an ultralow-noise continuous-wave laser in combination with a dedicated electrical scheme, we measured the frequency noise properties of an optical mode of the 25-GHz laser, of its repetition rate and indirectly of its carrier-envelope offset (CEO) signal without detecting the CEO frequency by the standard approach of nonlinear interferometry. We observed a strong anticorrelation between the frequency noise of the indirect CEO signal and of the repetition rate in our laser, leading to optical modes with a linewidth below 300 kHz in the free-running laser (at 100-ms integration time), much narrower than the individual contributions of the carrier envelope offset and repetition rate. We explain this behavior by the presence of a fixed point located close to the optical carrier in the laser spectrum for the dominant noise source.
ISSN:1943-0655