Real-Time Hand Gesture Recognition in Clinical Settings: A Low-Power FMCW Radar Integrated Sensor System with Multiple Feature Fusion

Robust and efficient contactless human–machine interaction is critical for integrated sensor systems in clinical settings, demanding low-power solutions adaptable to edge computing platforms. This paper presents a real-time hand gesture recognition system using a low-power Frequency-Modulated Contin...

Full description

Saved in:
Bibliographic Details
Main Authors: Haili Wang, Muye Zhang, Linghao Zhang, Xiaoxiao Zhu, Qixin Cao
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/13/4169
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Robust and efficient contactless human–machine interaction is critical for integrated sensor systems in clinical settings, demanding low-power solutions adaptable to edge computing platforms. This paper presents a real-time hand gesture recognition system using a low-power Frequency-Modulated Continuous Wave (FMCW) radar sensor, featuring a novel Multiple Feature Fusion (MFF) framework optimized for deployment on edge devices. The proposed system integrates velocity profiles, angular variations, and spatial-temporal features through a dual-stage processing architecture: an adaptive energy thresholding detector segments gestures, followed by an attention-enhanced neural classifier. Innovations include dynamic clutter suppression and multi-path cancellation optimized for complex clinical environments. Experimental validation demonstrates high performance, achieving 98% detection recall and 93.87% classification accuracy under LOSO cross-validation. On embedded hardware, the system processes at 28 FPS, showing higher robustness against environmental noise and lower computational overhead compared with existing methods. This low-power, edge-based solution is highly suitable for applications like sterile medical control and patient monitoring, advancing contactless interaction in healthcare by addressing efficiency and robustness challenges in radar sensing for edge computing.
ISSN:1424-8220