Beyond Static Estimates: Dynamic Simulation of Fire–Evacuation Interaction in Historical Districts

Historical districts face pressing disaster preparedness challenges due to their special spatial properties—risks compounded by static approaches that overlook dynamic fire–pedestrian interactions. This study employs an agent-based model (ABM) for fire simulations and AnyLogic pedestrian dynamics to...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhi Yue, Zhe Ma, Di Yao, Yue He, Linglong Gu, Shizhong Jing
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/12/6813
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Historical districts face pressing disaster preparedness challenges due to their special spatial properties—risks compounded by static approaches that overlook dynamic fire–pedestrian interactions. This study employs an agent-based model (ABM) for fire simulations and AnyLogic pedestrian dynamics to address these gaps in Dukezong Ancient Town, Yunnan Province, China, considering diverse ignition points, seasonal temperatures, and wind conditions. Dynamic simulations of 16 scenarios reveal critical spatial impacts: within 30 min, ≥28% of streets became impassable, with central ignition points causing faster obstructions. Static models underestimate evacuation durations by up to 135%, neglecting early stage congestions and detours caused by high-temperature zones. Congestions are concentrated along main east–west arterial roads, worsening with longer warning distances. A mismatch between evacuation flows and shelter capacity is found. Thus, a three-stage interaction simplification is derived: localized detours (0–10 min), congestion-driven delays on critical roads (11–30 min), and prolonged structural damage afterward. This study challenges static approaches by highlighting the “fast alert-fast congestion” paradox, where rapid alerts overwhelm narrow pathways. Solutions prioritize multi-route guidance systems, optimized shelter access points, and real-time information dissemination to reduce bottlenecks without costly infrastructure changes. This study advances disaster modeling by bridging disaster development with dynamic evacuation, offering a replicable framework for similar environments.
ISSN:2076-3417