Network-, Cost-, and Renewable-Aware Ant Colony Optimization for Energy-Efficient Virtual Machine Placement in Cloud Datacenters
Virtual machine (VM) placement in cloud datacenters is a complex multi-objective challenge involving trade-offs among energy efficiency, carbon emissions, and network performance. This paper proposes NCRA-DP-ACO (Network-, Cost-, and Renewable-Aware Ant Colony Optimization with Dynamic Power Usage E...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Future Internet |
Subjects: | |
Online Access: | https://www.mdpi.com/1999-5903/17/6/261 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Virtual machine (VM) placement in cloud datacenters is a complex multi-objective challenge involving trade-offs among energy efficiency, carbon emissions, and network performance. This paper proposes NCRA-DP-ACO (Network-, Cost-, and Renewable-Aware Ant Colony Optimization with Dynamic Power Usage Effectiveness (PUE)), a bio-inspired metaheuristic that optimizes VM placement across geographically distributed datacenters. The approach integrates real-time solar energy availability, dynamic PUE modeling, and multi-criteria decision-making to enable environmentally and cost-efficient resource allocation. The experimental results show that NCRA-DP-ACO reduces power consumption by 13.7%, carbon emissions by 6.9%, and live VM migrations by 48.2% compared to state-of-the-art methods while maintaining Service Level Agreement (SLA) compliance. These results indicate the algorithm’s potential to support more environmentally and cost-efficient cloud management across dynamic infrastructure scenarios. |
---|---|
ISSN: | 1999-5903 |