Life Cycle Assessment on Osmotically Dehydrated Cut Potatoes: Effects of Shelf-Life Extension on Cultivation, Waste, and Environmental Impact Reduction

In this study, a Life Cycle Assessment (LCA) was conducted to evaluate the environmental impact of osmotically dehydrated, fresh-cut, pre-packaged potatoes compared to conventional untreated ones. The case study focused on a small processing line in Naxos Island, Greece, aiming to extend shelf-life...

Full description

Saved in:
Bibliographic Details
Main Authors: Sotiris Kottaridis, Christina Drosou, Christos Boukouvalas, Magdalini Krokida, Maria Katsouli, Efimia Dermesonlouoglou, Katerina Valta
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Waste
Subjects:
Online Access:https://www.mdpi.com/2813-0391/3/2/20
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, a Life Cycle Assessment (LCA) was conducted to evaluate the environmental impact of osmotically dehydrated, fresh-cut, pre-packaged potatoes compared to conventional untreated ones. The case study focused on a small processing line in Naxos Island, Greece, aiming to extend shelf-life by up to 5 days. The analysis covered the full value chain, from cultivation to household consumption, considering changes in energy and material use, transport volumes, waste generation, and cultivation demand. Three scenarios were assessed: (i) conventional untreated potatoes, (ii) dehydrated potatoes using market glycerol, and (iii) dehydrated potatoes using glycerol from vegetable oil treatment. Systems and life cycle inventories (LCI) were modelled in OpenLCA v2.4 software with the ecoinvent v3.11 database, applying the Environmental Footprint (EF) method, v3.1. The selected impact categories included the following: global warming potential, water use, freshwater ecotoxicity, freshwater and marine eutrophication, energy resource use, particulate matter formation, and acidification. Results showed that applying osmotic dehydration (OD) improved environmental performance in most, but not all, categories. When market glycerol was used, some burdens increased due to glycerol production. However, using glycerol from vegetable oil treatment resulted in reductions of 25.8% to 54.9% across all categories compared to the conventional scenario. Overall, OD with alternative glycerol proved to be the most environmentally beneficial approach.
ISSN:2813-0391