A Review of Coordinated Control Technology for Chassis of Distributed Drive Electric Vehicles

Distributed-drive electric vehicles (DDEVs), through independent, rapid, and precise control of the driving/braking torque of each wheel, offer unprecedented opportunities to enhance their handling stability, ride comfort, energy economy, and safety. However, their inherent over-actuation characteri...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuhang Zhang, Yingfeng Cai, Xiaoqiang Sun, Hai Wang, Long Chen, Te Chen, Chaochun Yuan
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/13/7175
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Distributed-drive electric vehicles (DDEVs), through independent, rapid, and precise control of the driving/braking torque of each wheel, offer unprecedented opportunities to enhance their handling stability, ride comfort, energy economy, and safety. However, their inherent over-actuation characteristics and multi-degree-of-freedom motion coupling pose significant challenges to the vehicle chassis control system. Chassis coordinated control, by coordinating multiple subsystems such as drive, braking, steering, and suspension, has become a key technology to fully leverage the advantages of distributed drive and address its challenges. This paper reviews the core issues in chassis coordinated control for DDEVs, comparatively analyzes several distributed electric drive coordinated control architectures, and systematically outlines recent research progress in lateral–longitudinal, lateral–vertical, longitudinal–vertical, and combined three-dimensional (lateral–longitudinal–vertical) coordinated control, including control architectures, key technologies, commonly used algorithms, and control allocation strategies. By analyzing and comparing the advantages, disadvantages, and application scenarios of different coordinated control schemes, this paper summarizes the key scientific problems and technical bottlenecks in this field and looks forward to development trends in intelligence, integration, and scenario-based fusion, aiming to provide a reference for the development of high-performance chassis control technology for DDEVs.
ISSN:2076-3417