A Review of Coordinated Control Technology for Chassis of Distributed Drive Electric Vehicles
Distributed-drive electric vehicles (DDEVs), through independent, rapid, and precise control of the driving/braking torque of each wheel, offer unprecedented opportunities to enhance their handling stability, ride comfort, energy economy, and safety. However, their inherent over-actuation characteri...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/15/13/7175 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Distributed-drive electric vehicles (DDEVs), through independent, rapid, and precise control of the driving/braking torque of each wheel, offer unprecedented opportunities to enhance their handling stability, ride comfort, energy economy, and safety. However, their inherent over-actuation characteristics and multi-degree-of-freedom motion coupling pose significant challenges to the vehicle chassis control system. Chassis coordinated control, by coordinating multiple subsystems such as drive, braking, steering, and suspension, has become a key technology to fully leverage the advantages of distributed drive and address its challenges. This paper reviews the core issues in chassis coordinated control for DDEVs, comparatively analyzes several distributed electric drive coordinated control architectures, and systematically outlines recent research progress in lateral–longitudinal, lateral–vertical, longitudinal–vertical, and combined three-dimensional (lateral–longitudinal–vertical) coordinated control, including control architectures, key technologies, commonly used algorithms, and control allocation strategies. By analyzing and comparing the advantages, disadvantages, and application scenarios of different coordinated control schemes, this paper summarizes the key scientific problems and technical bottlenecks in this field and looks forward to development trends in intelligence, integration, and scenario-based fusion, aiming to provide a reference for the development of high-performance chassis control technology for DDEVs. |
---|---|
ISSN: | 2076-3417 |