A Hybrid Deep Learning Approach for Cotton Plant Disease Detection Using BERT-ResNet-PSO

Cotton is one of the most valuable non-food agricultural products in the world. However, cotton production is often hampered by the invasion of disease. In most cases, these plant diseases are a result of insect or pest infestations, which can have a significant impact on production if not addressed...

Full description

Saved in:
Bibliographic Details
Main Authors: Chetanpal Singh, Santoso Wibowo, Srimannarayana Grandhi
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/13/7075
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cotton is one of the most valuable non-food agricultural products in the world. However, cotton production is often hampered by the invasion of disease. In most cases, these plant diseases are a result of insect or pest infestations, which can have a significant impact on production if not addressed promptly. It is, therefore, crucial to accurately identify leaf diseases in cotton plants to prevent any negative effects on yield. This paper presents a hybrid deep learning approach based on Bidirectional Encoder Representations from Transformers with Residual network and particle swarm optimization (BERT-ResNet-PSO) for detecting cotton plant diseases. This approach starts with image pre-processing, which they pass to a BERT-like encoder after linearly embedding the image patches. It results in segregating disease regions. Then, the output of the encoded feature is passed to ResNet-based architecture for feature extraction and further optimized by PSO to increase the classification accuracy. The approach is tested on a cotton dataset from the Plant Village dataset, where the experimental results show the effectiveness of this hybrid deep learning approach, achieving an accuracy of 98.5%, precision of 98.2% and recall of 98.7% compared to the existing deep learning approaches such as ResNet50, VGG19, InceptionV3, and ResNet152V2. This study shows that the hybrid deep learning approach is capable of dealing with the cotton plant disease detection problem effectively. This study suggests that the proposed approach is beneficial to help avoid crop losses on a large scale and support effective farming management practices.
ISSN:2076-3417