Improved Liquefaction Hazard Assessment via Deep Feature Extraction and Stacked Ensemble Learning on Microtremor Data

The reduction in disaster risk in urban regions due to natural hazards (e.g., earthquakes, landslides, floods, and tropical cyclones) is primarily a development matter that must be treated within the scope of a broader urban development framework. Natural hazard assessment is one of the turning poin...

Full description

Saved in:
Bibliographic Details
Main Authors: Oussama Arab, Soufiana Mekouar, Mohamed Mastere, Roberto Cabieces, David Rodríguez Collantes
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/12/6614
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The reduction in disaster risk in urban regions due to natural hazards (e.g., earthquakes, landslides, floods, and tropical cyclones) is primarily a development matter that must be treated within the scope of a broader urban development framework. Natural hazard assessment is one of the turning points in mitigating disaster risk, which typically contributes to stronger urban resilience and more sustainable urban development. Regarding this challenge, our research proposes a new approach in the signal processing chain and feature extraction from microtremor data that focuses mainly on the Horizontal-to-Vertical Spectral Ratio (HVSR) so as to assess liquefaction potential as a natural hazard using AI. The key raw seismic features of site amplification and resonance are extracted from the data via bandpass filtering, Fourier Transformation (FT), the calculation of the HVSR, and smoothing through the use of moving averages. The main novelty is the integration of machine learning, particularly stacked ensemble learning, for liquefaction potential classification from imbalanced seismic datasets. For this approach, several models are used to consider class imbalance, enhancing classification performance and offering better insight into liquefaction risk based on microtremor data. Then, the paper proposes a liquefaction detection method based on deep learning with an autoencoder and stacked classifiers. The autoencoder compresses data into the latent space, underlining the liquefaction features classified by the multi-layer perceptron (MLP) classifier and eXtreme Gradient Boosting (XGB) classifier, and the meta-model combines these outputs to put special emphasis on rare liquefaction events. This proposed methodology improved the detection of an imbalanced dataset, although challenges remain in both interpretability and computational complexity. We created a synthetic dataset of 1000 samples using realistic feature ranges that mimic the Rif data region to test model performance and conduct sensitivity analysis. Key seismic and geotechnical variables were included, confirming the amplification factor (Af) and seismic vulnerability index (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>K</mi><mi>g</mi></msub></semantics></math></inline-formula>) as dominant predictors and supporting model generalizability in data-scarce regions. Our proposed method for liquefaction potential classification achieves 100% classification accuracy, 100% precision, and 100% recall, providing a new baseline. Compared to existing models such as XGB and MLP, the proposed model performs better in all metrics. This new approach could become a critical component in assessing liquefaction hazard, contributing to disaster mitigation and urban planning.
ISSN:2076-3417