A Compact Grating-Type Labyrinthine Acoustic Metasurface for Broadband Multifunctional Wavefront Control

This study presents the design and numerical validation of a grating-type labyrinthine acoustic metasurface capable of full 0–2π phase modulation with high transmission efficiency. By tuning the tooth length of the subwavelength unit cells, precise control of the transmission phase is achieved while...

Full description

Saved in:
Bibliographic Details
Main Authors: Zelong Wang, Yiming Gu, Yong Cheng, Huichuan Zhao
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/15/6/548
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study presents the design and numerical validation of a grating-type labyrinthine acoustic metasurface capable of full 0–2π phase modulation with high transmission efficiency. By tuning the tooth length of the subwavelength unit cells, precise control of the transmission phase is achieved while maintaining a high transmission coefficient across the operational bandwidth. The proposed metasurface structure is evaluated through comprehensive finite element simulations using COMSOL Multiphysics 6.0 at a center frequency of 4000 Hz. The following five core wavefront manipulation functionalities are demonstrated: complete phase modulation, anomalous refraction, planar wave focusing, cylindrical-to-plane wave conversion, and cylindrical wave focusing. Each functionality is validated across a 400 Hz frequency range to confirm robust broadband performance. The metasurface exhibits minimal phase degradation and maintains high spatial coherence across varying frequencies, highlighting its potential for applications in acoustic beam steering, imaging, and wavefront engineering.
ISSN:2073-4352