Printability Optimization of LDPE-Based Composites for Tool Production in Crewed Space Missions: From Numerical Simulation to Additive Manufacturing
Fused filament fabrication (FFF) is a 3D printing technology that has been successfully demonstrated aboard the International Space Station (ISS), proving its suitability for space applications. In this study, we aimed to apply FFF to the 3D printing of recycled space beverage packaging, made of LDP...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Aerospace |
Subjects: | |
Online Access: | https://www.mdpi.com/2226-4310/12/6/530 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fused filament fabrication (FFF) is a 3D printing technology that has been successfully demonstrated aboard the International Space Station (ISS), proving its suitability for space applications. In this study, we aimed to apply FFF to the 3D printing of recycled space beverage packaging, made of LDPE and a PET-Aluminum-LDPE (PAL) trilaminate. To minimize material waste and optimize the experimental process, we first conducted numerical simulations of additive manufacturing. Using Digimat-AM 2021.1 software, we analyzed residual stresses and warpage in an LDPE/PAL composite with a 10 wt% filler content, processed through the FFF technique. Three key printing parameters, including printing speed and infill pattern, were varied across different levels to assess their impact. Once the optimal combination of parameters for minimizing residual stresses and warpage was identified, we proceeded with the experimental phase, printing objects of increasing complexity to validate the correlation between numerical predictions and the 3D-printed models. The successful fabrication of all geometries under optimized conditions confirmed the numerical predictions, particularly the reduction in warpage and residual stress, validating the material’s viability for additive manufacturing. These findings support the potential application of the LDPE/PAL composite for in situ resource utilization strategies in long-term space missions. |
---|---|
ISSN: | 2226-4310 |