PCA Weight Determination-Based InSAR Baseline Optimization Method: A Case Study of the HaiKou Phosphate Mining Area in Kunming, Yunnan Province, China
In InSAR processing, optimizing baselines by selecting appropriate interferometric pairs is crucial for ensuring interferogram quality and improving InSAR monitoring accuracy. However, in multi-temporal InSAR processing, the quality of interferometric pairs is constrained by spatiotemporal baseline...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/17/13/2163 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In InSAR processing, optimizing baselines by selecting appropriate interferometric pairs is crucial for ensuring interferogram quality and improving InSAR monitoring accuracy. However, in multi-temporal InSAR processing, the quality of interferometric pairs is constrained by spatiotemporal baseline parameters and surface scattering characteristics. Traditional selection methods, such as those based on average coherence thresholding, consider only a single factor and do not account for the interactions among multiple factors. This study introduces a principal component analysis (PCA) method to comprehensively analyze four factors: temporal baseline, spatial baseline, NDVI difference, and coherence, scientifically setting weights to achieve precise selection of interferometric pairs. Additionally, the GACOS (Generic Atmospheric Correction Online Service) atmospheric correction product is applied to further enhance data quality. Taking the Haikou Phosphate Mine area in Kunming, Yunnan, as the study area, surface deformation information was extracted using the SBAS-InSAR technique, and the spatiotemporal characteristics of subsidence were analyzed. The research results show the following: (1) compared with other methods, the PCA-based interferometric pair optimization method significantly improves the selection performance. The minimum value decreases to 0.248 rad, while the mean and standard deviation are reduced to 1.589 rad and 0.797 rad, respectively, effectively suppressing error fluctuations and enhancing the stability of the inversion; (2) through comparative analysis of the effective pixel ratio and standard deviation of deformation rates, as well as a comprehensive evaluation of the deformation rate probability density function (PDF) distribution, the PCA optimization method maintains a high effective pixel ratio while enhancing sensitivity to surface deformation changes, indicating its advantage in deformation monitoring in complex terrain areas; (3) the combined analysis of spatial autocorrelation (Moran’s I coefficient) and spatial correlation coefficients (Pearson and Spearman) verified the advantages of the PCA optimization method in maintaining spatial structure and result consistency, supporting its ability to achieve higher accuracy and stability in complex surface deformation monitoring. In summary, the PCA-based baseline optimization method significantly improves the accuracy of SBAS-InSAR in surface subsidence monitoring, fully demonstrating its reliability and stability in complex terrain areas, and providing a solid technical support for dynamic monitoring of surface subsidence in mining areas. |
---|---|
ISSN: | 2072-4292 |