One-Dimensional Plume Dispersion Modeling in Marine Conditions (SEDPLUME1D-Model)
Dredging of fine sediments and dumping of fines at disposal sites produce passive plumes behind the dredging equipment. Each type of dredging method has its own plume characteristics. All types of dredging operations create some form of turbidity (spillage of dredged materials) in the water column,...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Journal of Marine Science and Engineering |
Subjects: | |
Online Access: | https://www.mdpi.com/2077-1312/13/6/1186 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dredging of fine sediments and dumping of fines at disposal sites produce passive plumes behind the dredging equipment. Each type of dredging method has its own plume characteristics. All types of dredging operations create some form of turbidity (spillage of dredged materials) in the water column, depending on (i) the applied method (mechanical grab/backhoe, hydraulic suction dredging with/without overflow), (ii) the nature of the sediment bed, and (iii) the hydrodynamic conditions. A simple parameter to represent the spillage of dredged materials is the spill percentage (R<sub>spill</sub>) of the initial load. In the case of cutter dredging and hopper dredging without overflow, sediment spillage is mostly low, with values in the range of 1% to 3%, The spill percentage is higher, in the range of 3% to 30%, for hopper dredging of mud with intensive overflow. Spilling of dredged materials also occurs at disposal sites. The spill percentage is generally low, with values in the range of 1% to 3%, if the load is dumped through bottom doors in deep water, creating a dynamic plume which descends rapidly to the bottom with cloud velocities of 1 m/s. The most accurate approach to study passive plume behavior is the application of a 3D model, which, however, is a major, time-consuming effort. A practical 1D plume dispersion model can help to identify the best parameter settings involved and to conduct fast scan studies. The proposed 1D model represents equations for dynamic plume behavior, as well as passive plume behavior including advection, diffusion and settling processes. |
---|---|
ISSN: | 2077-1312 |