AI-Enhanced 3D Transperineal Ultrasound: Advancing Biometric Measurements for Precise Prolapse Severity Assessment
Pelvic organ prolapse (POP) is a common pelvic floor disorder with substantial impact on women’s quality of life, necessitating accurate and reproducible diagnostic methods. This study investigates the use of three-dimensional (3D) transperineal ultrasound, integrated with artificial intelligence (A...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-07-01
|
Series: | Bioengineering |
Subjects: | |
Online Access: | https://www.mdpi.com/2306-5354/12/7/754 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pelvic organ prolapse (POP) is a common pelvic floor disorder with substantial impact on women’s quality of life, necessitating accurate and reproducible diagnostic methods. This study investigates the use of three-dimensional (3D) transperineal ultrasound, integrated with artificial intelligence (AI), to evaluate pelvic floor biomechanics and identify correlations between biometric parameters and prolapse severity. Thirty-seven female patients diagnosed with genital prolapse (mean age: 65.3 ± 10.6 years; mean BMI: 29.5 ± 3.8) were enrolled. All participants underwent standardized 3D transperineal ultrasound using the Mindray Smart Pelvic system, an AI-assisted imaging platform. Key biometric parameters—anteroposterior diameter, laterolateral diameter, and genital hiatus area—were measured under three functional states: rest, maximal Valsalva maneuver, and voluntary pelvic floor contraction. Additionally, two functional indices were derived: the distensibility index (ratio of Valsalva to rest) and the contractility index (ratio of contraction to rest), reflecting pelvic floor elasticity and muscular function, respectively. Statistical analysis included descriptive statistics and univariate correlation analysis using Pelvic Organ Prolapse Quantification (POP-Q) system scores. Results revealed a significant correlation between laterolateral diameter and prolapse severity across multiple compartments and functional states. In apical prolapse, the laterolateral diameter measured at rest and during both Valsalva and contraction showed positive correlations with POP-Q point C, indicating increasing transverse pelvic dimensions with more advanced prolapse (e.g., r = 0.42 to 0.58; <i>p</i> < 0.05). In anterior compartment prolapse, the same parameter measured during Valsalva and contraction correlated significantly with POP-Q point AA (e.g., r = 0.45 to 0.61; <i>p</i> < 0.05). Anteroposterior diameters and genital hiatus area were also analyzed but showed weaker or inconsistent correlations. AI integration facilitated real-time image segmentation and automated measurement, reducing operator dependency and increasing reproducibility. These findings highlight the laterolateral diameter as a strong, reproducible anatomical marker for POP severity, particularly when assessed dynamically. The combined use of AI-enhanced imaging and functional indices provides a novel, standardized, and objective approach for assessing pelvic floor dysfunction. This methodology supports more accurate diagnosis, individualized management planning, and long-term monitoring of pelvic floor disorders. |
---|---|
ISSN: | 2306-5354 |