Artificial Intelligence in Laryngeal Cancer Detection: A Systematic Review and Meta-Analysis
(1) Background: The early detection of laryngeal cancer is crucial for achieving superior patient outcomes and preserving laryngeal function. Artificial intelligence (AI) methodologies can expedite the triage of suspicious laryngeal lesions, thereby diminishing the critical timeframe required for cl...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Current Oncology |
Subjects: | |
Online Access: | https://www.mdpi.com/1718-7729/32/6/338 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | (1) Background: The early detection of laryngeal cancer is crucial for achieving superior patient outcomes and preserving laryngeal function. Artificial intelligence (AI) methodologies can expedite the triage of suspicious laryngeal lesions, thereby diminishing the critical timeframe required for clinical intervention. (2) Methods: We included all studies published up to February 2025. We conducted a systematic search across five major databases: MEDLINE, EMCARE, EMBASE, PubMed, and the Cochrane Library. We included 15 studies, with a total of 17,559 patients. A risk of bias assessment was performed using the QUADAS-2 tool. We conducted data synthesis using the Meta Disc 1.4 program. (3) Results: A meta-analysis revealed that AI demonstrated high sensitivity (78%) and specificity (86%), with a Pooled Diagnostic Odds Ratio of 53.77 (95% CI: 27.38 to 105.62) in detecting laryngeal cancer. The subset analysis revealed that CNN-based AI models are superior to non-CNN-based models in image analysis and lesion detection. (4) Conclusions: AI can be used in real-world settings due to its diagnostic accuracy, high sensitivity, and specificity. |
---|---|
ISSN: | 1198-0052 1718-7729 |