A Comprehensive Review of Mathematical Error Characterization and Mitigation Strategies in Terrestrial Laser Scanning
In recent years, there has been an increasing transition from 1D point-based to 3D point-cloud-based data acquisition for monitoring applications and deformation analysis tasks. Previously, many studies relied on point-to-point measurements using total stations to assess structural deformation. Howe...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-07-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/17/14/2528 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In recent years, there has been an increasing transition from 1D point-based to 3D point-cloud-based data acquisition for monitoring applications and deformation analysis tasks. Previously, many studies relied on point-to-point measurements using total stations to assess structural deformation. However, the introduction of terrestrial laser scanning (TLS) has commenced a new era in data capture with a high level of efficiency and flexibility for data collection and post processing. Thus, a robust understanding of both data acquisition and processing techniques is required to guarantee high-quality deliverables to geometrically separate the measurement uncertainty and movements. TLS is highly demanding in capturing detailed 3D point coordinates of a scene within either short- or long-range scanning. Although various studies have examined scanner misalignments under controlled conditions within the short range of observation (scanner calibration), there remains a knowledge gap in understanding and characterizing errors related to long-range scanning (scanning calibration). Furthermore, limited information on manufacturer-oriented calibration tests highlights the motivation for designing a user-oriented calibration test. This research focused on investigating four primary sources of error in the generic error model of TLS. These were categorized into four geometries: instrumental imperfections related to the scanner itself, atmospheric effects that impact the laser beam, scanning geometry concerning the setup and varying incidence angles during scanning, and object and surface characteristics affecting the overall data accuracy. This study presents previous findings of TLS calibration relevant to the four error sources and mitigation strategies and identified current challenges that can be implemented as potential research directions. |
---|---|
ISSN: | 2072-4292 |