A Review of Non-Fully Supervised Deep Learning for Medical Image Segmentation

Medical image segmentation, a critical task in medical image analysis, aims to precisely delineate regions of interest (ROIs) such as organs, lesions, and cells, and is crucial for applications including computer-aided diagnosis, surgical planning, radiation therapy, and pathological analysis. While...

Full description

Saved in:
Bibliographic Details
Main Authors: Xinyue Zhang, Jianfeng Wang, Jinqiao Wei, Xinyu Yuan, Ming Wu
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Information
Subjects:
Online Access:https://www.mdpi.com/2078-2489/16/6/433
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Medical image segmentation, a critical task in medical image analysis, aims to precisely delineate regions of interest (ROIs) such as organs, lesions, and cells, and is crucial for applications including computer-aided diagnosis, surgical planning, radiation therapy, and pathological analysis. While fully supervised deep learning methods have demonstrated remarkable performance in this domain, their reliance on large-scale, pixel-level annotated datasets—a significant label scarcity challenge—severely hinders their widespread deployment in clinical settings. Addressing this limitation, this review focuses on non-fully supervised learning paradigms, systematically investigating the application of semi-supervised, weakly supervised, and unsupervised learning techniques for medical image segmentation. We delve into the theoretical foundations, core advantages, typical application scenarios, and representative algorithmic implementations associated with each paradigm. Furthermore, this paper compiles and critically reviews commonly utilized benchmark datasets within the field. Finally, we discuss future research directions and challenges, offering insights for advancing the field and reducing dependence on extensive annotation.
ISSN:2078-2489