Cascade-Gain-Switching for Generating 3.5-<inline-formula><tex-math notation="LaTeX">$\mu$</tex-math> </inline-formula>m Nanosecond Pulses From Monolithic Fiber Lasers

We propose a novel laser configuration that can output 3.5-<inline-formula><tex-math notation="LaTeX"> $\mu$</tex-math></inline-formula>m nanosecond laser pulses based on a simple and monolithic fiber structure. Cascade-gain-switching (CGS) converts the wavelength o...

Full description

Saved in:
Bibliographic Details
Main Authors: Jianlong Yang, Haizhe Zhong, Shuaiyi Zhang, Yulong Tang, Dianyuan Fan
Format: Article
Language:English
Published: IEEE 2018-01-01
Series:IEEE Photonics Journal
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8470087/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose a novel laser configuration that can output 3.5-<inline-formula><tex-math notation="LaTeX"> $\mu$</tex-math></inline-formula>m nanosecond laser pulses based on a simple and monolithic fiber structure. Cascade-gain-switching (CGS) converts the wavelength of nanosecond pulses from 1.55 to 3.5 <inline-formula> <tex-math notation="LaTeX">$\mu$</tex-math></inline-formula>m by two successive gain-switching processes. CGS eliminates the requirement of using bulky free-space modulators for Q-switching. With a well-established theoretical model, we investigated the feasibility of this novel configuration and thoroughly explored its characteristics. In single-shot regime, the pulse width of the 1.55-<inline-formula><tex-math notation="LaTeX">$\mu$</tex-math> </inline-formula>m pump has major impact on the temporal shape of the intermediate 1.97-<inline-formula> <tex-math notation="LaTeX">$\mu$</tex-math></inline-formula>m pulse while has neglected influence on the generated 3.5- <inline-formula><tex-math notation="LaTeX">$\mu$</tex-math></inline-formula>m pulse. On the other hand, increasing the continuous-wave (CW) pump power can significantly improve the output peak power and shorten the pulse when the pump power is less than <inline-formula><tex-math notation="LaTeX">$\sim 4$</tex-math></inline-formula> W. In the repetitive-pulse regime, we found the maximum repetition rate is positively correlated the CW pump power. With a typical CW pump power of 5 W, the 3.5-<inline-formula><tex-math notation="LaTeX">$\mu$</tex-math></inline-formula>m pulse train can be stably outputted when the repetition rate is <inline-formula><tex-math notation="LaTeX">$&lt;=100$ </tex-math></inline-formula> kHz.
ISSN:1943-0655