On The Performance of The Effects of Temperature Variation in Ultrafast Incoherent Fiber-Optic CDMA Systems With SOA-Based Tunable Dispersion Compensator

Recent studies show that temperature variation in ultrafast incoherent fiber-optic code-division multiple-access (FO-CDMA) systems using picosecond multiwavelength codes is a realistic problem even though dispersion-compensating fiber is utilized. The phenomenon creates distortions in auto- and cros...

Full description

Saved in:
Bibliographic Details
Main Authors: Che-Wei Chang, Guu-Chang Yang, Ivan Glesk, Wing C. Kwong
Format: Article
Language:English
Published: IEEE 2019-01-01
Series:IEEE Photonics Journal
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8718368/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent studies show that temperature variation in ultrafast incoherent fiber-optic code-division multiple-access (FO-CDMA) systems using picosecond multiwavelength codes is a realistic problem even though dispersion-compensating fiber is utilized. The phenomenon creates distortions in auto- and cross-correlation functions and then worsens system performance. A physical-layer mitigation approach has been reported by using a recently demonstrated semiconductor-optical-amplifier-based tunable dispersion compensator to fully recover the auto-correlation peaks. Applying the concept of “chip granularity” to account for the effects of temperature variation to the cross-correlation functions, this paper formulates a new performance-analytical model for such FO-CDMA systems. The model also supports adjustable quality-of-services through code weight control.
ISSN:1943-0655