Method for Analyzing the Importance of Quality and Safety Influencing Factors in Automotive Body Manufacturing Process—A Comprehensive Weight Evaluation Method to Reduce Subjective Influence

The automotive industry is a key pillar of many national economies, and automotive body manufacturing is among the most complex production processes. In the automotive body manufacturing process, quality control and safety assurance are of paramount importance, directly influencing the overall safet...

Full description

Saved in:
Bibliographic Details
Main Authors: Ying Xiang, Long Guo, Shaoqian Ji, Shengchao Zhu, Zhiming Guo, Hu Qiao
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/12/1944
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The automotive industry is a key pillar of many national economies, and automotive body manufacturing is among the most complex production processes. In the automotive body manufacturing process, quality control and safety assurance are of paramount importance, directly influencing the overall safety performance, structural reliability, and comfort of vehicles. Therefore, it is crucial to analyze the primary factors that influence quality and safety during the car body manufacturing process. The study first focuses on four key processes of car body manufacturing—stamping, welding, painting, and assembly—using the man, machine, material, method, environment (4M1E) framework to analyze the factors affecting quality and safety. Subsequently, a quality and safety early-warning indicator system is established for the automotive body manufacturing process, followed by a comprehensive analysis of the constructed system. To address the issue of subjectivity in traditional technique for order of preference by similarity to an ideal solution (TOPSIS) evaluation methods, this paper employs the coefficient of variation method for objective analysis of criterion-level indicators, the trapezoidal fuzzy number method for subjective analysis of criterion-level indicators, and establishes a model for optimizing target weight that balances subjective and objective approaches. Furthermore, a relative entropy-based method is applied to comprehensively evaluate criterion-level indicators. This approach reduces the information loss associated with separate weighting schemes and overcomes a known limitation of traditional TOPSIS—its inability to distinguish alternatives that lie equidistant from ideal solutions. Finally, an evaluation model for quality and safety influencing factors in body manufacturing is developed and validated through a case study, demonstrating its feasibility. The results show that the proposed model can effectively identify the key quality and safety influencing factors in the automobile body manufacturing process, guarantee quality control and safety assurance in the body manufacturing process, and thus ensure that the automobile production process meets the quality and safety requirements.
ISSN:2227-7390