Cross‐Point Arrays with Low‐Power ITO‐HfO2 Resistive Memory Cells Integrated on Vertical III‐V Nanowires

Abstract Vertical nanowires with cointegrated metal‐oxide‐semiconductor field‐effect‐transistor (MOSFET) selectors and nonvolatile resistive random access memory (RRAM) cells represent a promising candidate for fast, energy‐efficient, cross‐point memory cells. This paper explores indium‐tin‐oxide‐ha...

Full description

Saved in:
Bibliographic Details
Main Authors: Karl‐Magnus Persson, Mamidala Saketh Ram, Olli‐Pekka Kilpi, Mattias Borg, Lars‐Erik Wernersson
Format: Article
Language:English
Published: Wiley-VCH 2020-06-01
Series:Advanced Electronic Materials
Subjects:
Online Access:https://doi.org/10.1002/aelm.202000154
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1839610185778200576
author Karl‐Magnus Persson
Mamidala Saketh Ram
Olli‐Pekka Kilpi
Mattias Borg
Lars‐Erik Wernersson
author_facet Karl‐Magnus Persson
Mamidala Saketh Ram
Olli‐Pekka Kilpi
Mattias Borg
Lars‐Erik Wernersson
author_sort Karl‐Magnus Persson
collection DOAJ
description Abstract Vertical nanowires with cointegrated metal‐oxide‐semiconductor field‐effect‐transistor (MOSFET) selectors and nonvolatile resistive random access memory (RRAM) cells represent a promising candidate for fast, energy‐efficient, cross‐point memory cells. This paper explores indium‐tin‐oxide‐hafnium‐dioxide RRAM cells integrated onto arrays of indium‐arsenide (InAs) vertical nanowires with a resulting area of 0.06 µm2 per cell. For low current operation, an improved switching uniformity over the intrinsic self‐compliant behavior is demonstrated when using an external InAs nanowire MOSFET selector in series. The memory cells show consistent switching voltages below ±1 V and a switching cycle endurance of 106 is demonstrated. The developed fabrication scheme is fully compatible with low‐ON‐resistance vertical III‐V nanowire MOSFET selectors, where operational compatibility with the initial high‐field filament forming is established. Due to the small footprint of a vertical implementation, high density integration is achievable, and with a measured programming energy for 50 ns pulses at 0.49 pJ, the technology promises fast and ultralow power cross‐point memory arrays.
format Article
id doaj-art-8c64a1d5f5c54a609600dc817d51d66d
institution Matheson Library
issn 2199-160X
language English
publishDate 2020-06-01
publisher Wiley-VCH
record_format Article
series Advanced Electronic Materials
spelling doaj-art-8c64a1d5f5c54a609600dc817d51d66d2025-07-29T18:04:55ZengWiley-VCHAdvanced Electronic Materials2199-160X2020-06-0166n/an/a10.1002/aelm.202000154Cross‐Point Arrays with Low‐Power ITO‐HfO2 Resistive Memory Cells Integrated on Vertical III‐V NanowiresKarl‐Magnus Persson0Mamidala Saketh Ram1Olli‐Pekka Kilpi2Mattias Borg3Lars‐Erik Wernersson4Electrical and Information technology Lund University Box 118 Lund 221 00 SwedenElectrical and Information technology Lund University Box 118 Lund 221 00 SwedenElectrical and Information technology Lund University Box 118 Lund 221 00 SwedenElectrical and Information technology Lund University Box 118 Lund 221 00 SwedenElectrical and Information technology Lund University Box 118 Lund 221 00 SwedenAbstract Vertical nanowires with cointegrated metal‐oxide‐semiconductor field‐effect‐transistor (MOSFET) selectors and nonvolatile resistive random access memory (RRAM) cells represent a promising candidate for fast, energy‐efficient, cross‐point memory cells. This paper explores indium‐tin‐oxide‐hafnium‐dioxide RRAM cells integrated onto arrays of indium‐arsenide (InAs) vertical nanowires with a resulting area of 0.06 µm2 per cell. For low current operation, an improved switching uniformity over the intrinsic self‐compliant behavior is demonstrated when using an external InAs nanowire MOSFET selector in series. The memory cells show consistent switching voltages below ±1 V and a switching cycle endurance of 106 is demonstrated. The developed fabrication scheme is fully compatible with low‐ON‐resistance vertical III‐V nanowire MOSFET selectors, where operational compatibility with the initial high‐field filament forming is established. Due to the small footprint of a vertical implementation, high density integration is achievable, and with a measured programming energy for 50 ns pulses at 0.49 pJ, the technology promises fast and ultralow power cross‐point memory arrays.https://doi.org/10.1002/aelm.202000154indium‐tin‐oxide (ITO)memory arraysnanowiresRRAM
spellingShingle Karl‐Magnus Persson
Mamidala Saketh Ram
Olli‐Pekka Kilpi
Mattias Borg
Lars‐Erik Wernersson
Cross‐Point Arrays with Low‐Power ITO‐HfO2 Resistive Memory Cells Integrated on Vertical III‐V Nanowires
Advanced Electronic Materials
indium‐tin‐oxide (ITO)
memory arrays
nanowires
RRAM
title Cross‐Point Arrays with Low‐Power ITO‐HfO2 Resistive Memory Cells Integrated on Vertical III‐V Nanowires
title_full Cross‐Point Arrays with Low‐Power ITO‐HfO2 Resistive Memory Cells Integrated on Vertical III‐V Nanowires
title_fullStr Cross‐Point Arrays with Low‐Power ITO‐HfO2 Resistive Memory Cells Integrated on Vertical III‐V Nanowires
title_full_unstemmed Cross‐Point Arrays with Low‐Power ITO‐HfO2 Resistive Memory Cells Integrated on Vertical III‐V Nanowires
title_short Cross‐Point Arrays with Low‐Power ITO‐HfO2 Resistive Memory Cells Integrated on Vertical III‐V Nanowires
title_sort cross point arrays with low power ito hfo2 resistive memory cells integrated on vertical iii v nanowires
topic indium‐tin‐oxide (ITO)
memory arrays
nanowires
RRAM
url https://doi.org/10.1002/aelm.202000154
work_keys_str_mv AT karlmagnuspersson crosspointarrayswithlowpoweritohfo2resistivememorycellsintegratedonverticaliiivnanowires
AT mamidalasakethram crosspointarrayswithlowpoweritohfo2resistivememorycellsintegratedonverticaliiivnanowires
AT ollipekkakilpi crosspointarrayswithlowpoweritohfo2resistivememorycellsintegratedonverticaliiivnanowires
AT mattiasborg crosspointarrayswithlowpoweritohfo2resistivememorycellsintegratedonverticaliiivnanowires
AT larserikwernersson crosspointarrayswithlowpoweritohfo2resistivememorycellsintegratedonverticaliiivnanowires