Pears Internal Quality Inspection Based on X-Ray Imaging and Multi-Criteria Decision Fusion Model

Pears are susceptible to internal defects during growth and post-harvest handling, compromising their quality and market value. Traditional detection methods, such as manual inspection and physicochemical analysis, face limitations in efficiency, objectivity, and non-destructiveness. To address thes...

Full description

Saved in:
Bibliographic Details
Main Authors: Zeqing Yang, Jiahui Zhang, Zhimeng Li, Ning Hu, Zhengpan Qi
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Agriculture
Subjects:
Online Access:https://www.mdpi.com/2077-0472/15/12/1315
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pears are susceptible to internal defects during growth and post-harvest handling, compromising their quality and market value. Traditional detection methods, such as manual inspection and physicochemical analysis, face limitations in efficiency, objectivity, and non-destructiveness. To address these challenges, this study investigates a non-destructive approach integrating X-ray imaging and multi-criteria decision (MCD) theory for non-destructive internal defect detection in pears. Internal defects were identified by analyzing grayscale variations in X-ray images. The proposed method combines manual feature-based classifiers, including Local Binary Pattern (LBP) and Histogram of Oriented Gradients (HOG), with a deep convolutional neural network (DCNN) model within an MCD-based fusion framework. Experimental results demonstrated that the fused model achieved a detection accuracy of 97.1%, significantly outperforming individual classifiers. This approach effectively reduced misclassification caused by structural similarities in X-ray images. The study confirms the efficacy of X-ray imaging coupled with multi-classifier fusion for accurate and non-destructive internal quality evaluation of pears, offering practical value for fruit grading and post-harvest management in the pear industry.
ISSN:2077-0472