Resolving Non-Proportional Frequency Components in Rotating Machinery Signals Using Local Entropy Selection Scaling–Reassigning Chirplet Transform
Under complex operating conditions, vibration signals from rotating machinery often exhibit non-stationary characteristics with non-proportional and closely spaced instantaneous frequency (IF) components. Traditional time–frequency analysis (TFA) methods struggle to accurately extract such features...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-07-01
|
Series: | Aerospace |
Subjects: | |
Online Access: | https://www.mdpi.com/2226-4310/12/7/616 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Under complex operating conditions, vibration signals from rotating machinery often exhibit non-stationary characteristics with non-proportional and closely spaced instantaneous frequency (IF) components. Traditional time–frequency analysis (TFA) methods struggle to accurately extract such features due to energy leakage and component mixing. In response to these issues, an enhanced time–frequency analysis approach, termed Local Entropy Selection Scaling–Reassigning Chirplet Transform (LESSRCT), has been developed to improve the representation accuracy for complex non-stationary signals. This approach constructs multi-channel time–frequency representations (TFRs) by introducing multiple scales of chirp rates (CRs) and utilizes a Rényi entropy-based criterion to adaptively select multiple optimal CRs at the same time center, enabling accurate characterization of multiple fundamental components. In addition, a frequency reassignment mechanism is incorporated to enhance energy concentration and suppress spectral diffusion. Extensive validation was conducted on a representative synthetic signal and three categories of real-world data—bat echolocation, inner race bearing faults, and wind turbine gearbox vibrations. In each case, the proposed LESSRCT method was compared against SBCT, GLCT, CWT, SET, EMCT, and STFT. On the synthetic signal, LESSRCT achieved the lowest Rényi entropy of 13.53, which was 19.5% lower than that of SET (16.87) and 35% lower than GLCT (18.36). In the bat signal analysis, LESSRCT reached an entropy of 11.53, substantially outperforming CWT (19.91) and SBCT (15.64). For bearing fault diagnosis signals, LESSRCT consistently achieved lower entropy across varying SNR levels compared to all baseline methods, demonstrating strong noise resilience and robustness. The final case on wind turbine signals demonstrated its robustness and computational efficiency, with a runtime of 1.31 s and excellent resolution. These results confirm that LESSRCT delivers robust, high-resolution TFRs with strong noise resilience and broad applicability. It holds strong potential for precise fault detection and condition monitoring in domains such as aerospace and renewable energy systems. |
---|---|
ISSN: | 2226-4310 |